前言
近年来,很多、纤巧型便携式电子产品被开发出来,如手机、数码相机、MP3、MP4、PDA、GPS及DVD等。它们不仅体积小、重量轻、功能多,并且充电的时间间隔较长,即产品省电,从而延长了电池的寿命。
为延长产品充电的时间间隔,设计者采用了很多办法:采用单位体积、单位重量的电池容量最大的锂离子电池或锂聚合物电池,并且增加了电池的容量;在电路设计上采用节省电能的电路;在元器件选择上采用高效率的低功耗或微功耗产品或用专用集成电路以减少功率损耗;而最重要的措施是产品在不同的工作状态时,为有用的电路供电,而将暂时不用的电路断电,这样可最大限度地省电,这就是采用负载管理。
电源给各个电路供电,各个电路就是电源的"负载"。例如发射电路及接收电路是电源的负载,功率放大电路也是电源的负载。另外,电源的负载还包括一些器件(如LED)或一些其他产品(如硬盘、直流电动机等)。多功能的便携式电子产品有很多功能电路组成,随着工作电压的不同,对电源的要求也不相同,因此有多个电源。要实现负载管理并不容易,现代的负载管理是由微处理器、电源管理IC及负载开关组成。
电源管理IC组成的负载管理
微处理器通过控制电源的工作来实现负载管理,如图1所示,图1中有N个电源,每个电源带一个负载(有N个负载)。每一个电源都有一个使能端(EN,高电平有效)或关闭电源控制端(SHDN,低电平有效),微处理器的I/O口与电源的EN端或SHDN端连接,输出逻辑电平来控制电源的开通或关断,这样就可以实现负载管理。例如,某产品有6个电源,在某种工作状态时,需要电源1~3开通,则负载1~3得电工作,电源4~6关断,负载4~6失电不工作,只要在电源1~3的EN端加逻辑高电平,在电源4~6的EN端加低电平即可。
图2是TI公司的一种电源管理电感器类型IC(TPS65021)的功能结构示意图。它由1节锂离子电池供电,由微处理器通过I2C与器件接口。TPS65021内部有控制功能电路及6个电源(3个DC/DC转换器,3个线性稳压器LDO,输出V1-V6电压)。它可以给手机供电及实现负载管理。
数码相机中有三种电源:系统电源、LCD电源以及白光LED驱动电电感生产厂家源(背光照明及闪光灯电源)。系统电源部分由4个DC/DC转换器组成,如图3所示。它分别给CCD摄像头、I/F接口电路、CPU的核及伸缩镜头的电动机供电,通过微处理器可做负载管理,微处理器也可以根据工作功率电感状态要求来控制LCD背光亮度及闪光灯驱动电路。
负载开关IC组成的负载管理
负载管理也可以由微处理器与多个负载开关组成。负载开关是一种功率电子开关,其基本工作原理如图4-a)所示,它由两个MOSFET(Q1:P-MOSFET及Q2:N-MOSFET)及一个电阻R组成。其工作原理是:在ON/OFF端加高电平时,Q2导通;Q2导通时将Q1的栅极拉到接近地电平,若其IN接电源电压VIN,则Q1的源极与栅极之间的-VGS≈大电流电感VIN,则Q1相继导通,电源电压可经过负载开关给负载供电;若在ON/OFF端加低电平,则Q2截止;Q1的栅极及源极由电阻R连接,使栅极与源极同电位,即-VGS=0V,Q1截止,电源被切断,负载失电。负载开关的等效电路如4-b)所示。
|
由微处理器及N个负载开关及N个负载组成的负载管理结构框图如图5所示。各个负载开关接在电源与负载之间,其ON/OFF端与微处理器的I/O口连接。在不同的工作状态时,由微处理器给各个负载开关的ON/OFF端输出逻辑电平;输入高电平的负载得电,输入低电平的负载模压电感失电。采用这种方案也能实现负载管理,主要用于一个电源带多个负载的产品中。
电源管理IC及负载开关组成的结构
在实际应用中,往往由于电路复杂而采用电源管理IC及多个负载开关组成的负载管理系统,如图6所示。图6中有3个电源,输出不同的电压。电源1给负载1~3供电。为了控制负载1~3的通电或失电,在电源与负载之间设了3个负载开关。电源2、电源3则由电源管理IC来控制其负载的通电或失电。
基于北斗二代系统的嵌入式船用导航仪硬件设计摘要:随着北斗二代系统的研制与建设,在导航领域我国将会从GPS主宰的局面转向为以我国自主研发的北斗二代全球导航系统为主的局面。为了实现北斗船用导航仪更轻便、快捷、低功耗和低成本,提出了一种采用ARM9
加入电源后,信号加入了很大的噪声,求大神指教前两张是没有加入电源时的输入信号(40MHz),后两张是加入电源后的信号,最后一张是原理图;求解为什么加入电源后会有这么大的噪声?
“求解为什么加入电源后会有这么大的噪声?”
led驱动IC 选型表led驱动IC选型表
此帖出自LED专区论坛
led车灯驱动IC,led驱动ic选型
芯片不是这样卖的
qwqwqw2088发表于2016-7-1821:35芯片不是这样卖的
那应该是怎么样卖呢?
chengxl