l 移相式ZVZCSPWM软开关电源主电路分析
在设计制作的1.2kW(480V/2.5A)的软开关直流电源中,其主电路为全桥变换器结构,四只开关管均为MOSFET(1000V/24A),采用移相ZVZCSPWM控制,即超前臂开关管实现ZVS、滞后臂开关管实现ZCS,电路结构简图如图l,VT1~VT4是全桥变换器的四只MOSFET开关管,VD1、VD2分别是超前臂开关管VT1、VT2共模电感的反并超快恢复二极管,C1、C2分别是为了实现VTl、VT2的ZVS设置的高频电容,VD3、VD4是反向电流阻断二极管,以实现滞后臂VT3、VT4的ZCS,Llk为变压器漏感,Cb为阻断电容,T为主变压器,副边由VD5~VD8构成的高频整流电路以及Lf、C3、C4等滤波器件组成。
其基本工作原理如下:
当开关管V差模电感器T1、VT4或VT2、VT3同时导通时,电路工作情况与全桥变换器的硬开关工作模式情况一样,主变压器原边向负载提供能量。通过移相控制,在关断VT1时并不马上关断VT4,而是根据输出反馈信号决定的移相角,经过一定时间后再关断VT4,在关断VT1之前,由于VT1导通,其并联电容C1上电压等于VT1的导通压降,理想状况下其值为零,当关断VT1时刻,C1开始充电,由于电容电压不能突变,因此,VT1即是零电压关断。
由于一体电感变压器漏感L1k以及副边整流滤波电感的作用,VT1关断后,原边电流不能突变,继续给Cb充电,同时C2也通过原边放电,当C2电压降到零后,VD2自然导通,这时开通VT2,则VT2即是零电压开通。
当C1充满电、C2放电完毕后,由于VD2是导通的,此时加在变压器原边绕组和漏感上的电压为阻断电容Cb两端电压,原边电流开始减小,但继续给Cb充电,直大功率电感贴片电感器到原边电流为零,这时由于VD4的阻断作用,电容Cb不能通过VT2、VT4、VD4进行放电,Cb两端电压维持不变,这时流过VT4电流为零,关断VT4即是零电流关断。
关断VT4以后,经过预先设置的死区时间后开通VT3,由于电压器漏感的存在,原边电流不能突变,因此VT3即是零电流开通。
VT2、VT3同时导通后原边向负载提供能量,一定时间后关断VT2,由于C2的存在,VT2是零电压关断,如同前面分析,原边电流这时不能突变,C1经过VD3、VT3、Cb放电完毕后,VD1自然导通,此时开通VT1即是零电压开通,由于VD3的阻断,原边电流降为零以后,关断VT3,则VT3即是零电流关断,经过预选设置好的死区时间延迟后开通VT4,由于变压器漏感及副边滤波电感的作用,原边电流不能突变,VT4即是零电流开通。
这种采用超快恢复二极管阻断原边反向电流方式的移相式ZVZCS PWM全桥变换器拓扑的理想工作波形如图2所示,其中Uab表示主电路图3中a、b两点之间的电压,ip为变压器T原边电流,Ucb为阻断电容Ub上的电压,Urect是副边整流后的电压。
2 基于UC3875的主控制回路设计
为了实现主回路开关管ZVZCS软开关,采用UC3875为其设计了PWM移相控制电路,如图3所示。考虑到所选MOSFET功率比较大对芯片的四个输出驱动信号进行了功率放大,再经高频脉冲变压器T1、T2隔离最后经过驱动电路驱动MOSFET开关管。整个控制系统所有供电均用同一个15V直流电源,实验中设置开关频率为70kHz,死区时间设置为1.5μs,采用简单的电压控制模式,电源输出直流电压通过采样电路、光电隔离电路后形成控制信号,输入到UC3875误差放大器的EA一,控制UC3875误差放大器的输出,从而控制芯片四个输出之间的移相角大小,使电源能够稳定工作,图中R6、C5接在EA一和E/AOUT之间构成PI控制。在本设计中把CS+端用作故障保护电路,当发生输出过压、输出过流、高频变原边过流、开关管过热等故障时,通过一定的转换电路,把故障信号转换为高于2.5V的电压接到CS+端,使UC3875四个输出驱动信号全为低电平,对电路实现保护。
语音识别系统的单片机控制随着信息技术的飞速发展,人们寻求一种更为直接的人机对话方式,声控电脑就是再此基础上发展起来的。声控电脑使用语音识别技术,而语音识别是目前一种热门技术。电脑语音识别系统,可以用声音直接控制电脑工作,是人
接地——开关电源设计中的保护帐 现如今,开关电源已经代替了线性稳压电源,活跃在电子电力设计领域当中。人们也逐渐意识到,开关电源已经改变了电子设计行业的技术方向。在电源设计中,安全往往是第一位的,在开关电源中也是如此,接地能够保护使
LED照明电源设计中设计难题在LED照明电源设计中,存在以下几个设计难题:电解电容寿命与LED不相匹配、LED灯闪烁的常见原因与处理办法、PWM 调光对LED的寿命有何影响、利用TRIAC调光调控LED亮度的潜在问题。安森美半导