以太网供电(PoE)已经成为一种流行的概念,而且正被应用于诸多产品中,例如,网络电话、监控摄像头以及销售点终端。在一个提供以太网供电的网络中,电力是由电源设备(PSE)提供的,这种设备通过以太网连接产生一个44~57V输出。在以太网连接的另一端,电感器生产厂家电力被用电设备(PD)消耗掉。尽管目前正在对更高功率以太网供电标准进行定义,但是在单个以太网连接上,用电设备的功率被限制在13W左右。而不幸的是,这一功率对于许多复杂的应用来说往往是不够的。因电感生产此,一些高功率用电设备的设计需要将多端口中的功率转换为48V输入隔离的可用电压。现有的几种技术可以提供多输入源隔离式功率转换。
压降
对于并联DC/DC而言,一种常用的技术为压降法。如果输出电压随着负载电流增加而下降,那么并联电源将共享电流。这就要求在电源之间没有通信,并且消除潜在的信号故障。实施该技术,需要最小化额外部件的数量。如果使用了电流模式控制,那么您可以简单地限制控制环路的DC增益来引入同负载电流成比例关系的输出压降。如果需要更高的精确度,那么可以如图1中所示来实施该电路。该电路使用差动放大器U1B来测量输出电流,并且将一个误差注入到补偿放大器U1A的调节环路中。仅仅需要添加数个电阻器和一个单级放大器,便可实现自主电流共享。
图1 压降添加了极少的几个组件
不幸的是,压降共享并不是十分的精确。图2显示了1%电阻容差、1.5%参考容差和10%总压降的最坏情况变化。该设计具有一个5V的额定设置值和一个±%5的变量压降。最小值曲线和最大值曲线表明了其极值情况下的组件容差。如果您将这三个电源并联,且无负载情况,那么最高输出电源往往会调节输出电压。
图2 压降法在最差情况实现电流共享的能力相对较差
如图1所示,如果电源使用了二极管进行调节,那么带最低输出电压的电源将不会输出任何电流。随着负载电流的增加,输出电压开始下降。具有最高输出电压的电源将提供所有电流,直到其输出电压下降至5.25V。然后,第二高输出电压的电源开始提供电流。运用该假定最坏情况容差的设置值,在最低输出电压的电源开始发挥作用以前,第一个电源便提供了接近其输出功率70%的功率。由于不稳定,因此设计并不十分理想;尽管如此,在一些情况下还是可以接受的。随着负载电流的进一步增大,第一个电源可能会达到电流极限。电大电流电感流进一步增大的问题由其余两个电源来处理,从而实现额定功率运行。
同步整流电源拓扑结构允许电源提供或吸收输出电流,对于此种控制方案来说,这样会产生极大的问题。在极值情况下,一个电源可能会试图调节到高端扁平型电感,而另一个电源则调节至低端。当这种情况发生在无负载条件下时,一些电源将提供电流至输出端,而另一些电源则会将输出端的电流吸收。这样一来,就从一个电源中获取电力,并且在没有为负载提供电力的情况下将其返回至第二个电源。因此,建议在0A时关闭同步整流器。
交错式反向转换
许多PWM控制器是专门为交错法而设计的。如果仅仅需要两个相位,那么通过使用一个推挽式控制器来进行交错就可以极大地降低成本。图3显示了一个使用如UCC2808推挽式控制器的两相交错式反向电源的原理图。该芯片将每一个相位的占空比限制在50%,并且对两个功率级做180°的异相切换。该推挽式控制器使用峰值电流模式控制,将两个相位的峰值电流维持在接近的值。在一个不连续的反向电源中,输出功率(每相)同峰值初始电流的平方成比例关系。因此,所获得的功率自然地在两个输入端得到了平衡。这种技术使得从两个输入电源获得不超过5%误差的均衡电力。一次MOSFET上的开关延迟是电力不均衡的主要原因,并且在两个输入电压不相等的情况最为糟糕。由控制器提供的峰值电流极限限制了从每个输入端获得的最大电力,因此在欠压一体电感和故障时,占空比钳位又限制了输入电流。
[DCDC]开关电源,MOS管发热严重驱动LED的开关电源,直流电源输入25V,4A,通过单片机的PWM信号控制MOS管,改变占空比来调节输出电压0~25v,电流保持不变。
其中单片机的PWM信号通过LM324放大到20V,接上负载后发现MOS
大功率LED恒流驱动电源设计及PCB实物测试实验 文章摘自:LED社区(https://ledlight.专注于大电流电感设计、制造:电话 :181-2638-2251/module/forum/thread-593055-1-1.html
)
为了驱动高功率LED,设计了一种基于隔离反激
采用DC/DC转换器提高RF PA系统效率从功率预算的角度而言,直接由电池供电的射频功率放大器(RF PA)是需要重点考虑的元件。传统上,CDMA/WCDMA蜂窝标准中使用的射频功率放大器都直接由电池供电,这种供电方式使系统很容易设计,但是,