图3 一个推挽式控制器驱动一个交错式反向电源
使用二次侧负载共享控制器的电力共享
在多输入端之间共享电力的第三种方法是使用一个二次侧负载共享IC。使用此种方法,许多带有远程传感功能的独立电源就可以共享一个共有输出。负载共享IC通常与电源模块一同使用(见图4)。一个分流电阻器被用于测量每个转换器提供的电流。由于容差和寄生阻抗,其中的一个电源将提供比其他电源更多的电流,该电源将起到一个主电源的作用,并将设置负载共享(LS)总线上的电压,将其作为一个参考输入来控制输出电流。通过在从转换器的远程传感导线上注入一个电感厂家电压来调节从电源,就可以实现主电源对负载输出电压的控制,保证较好的负载调节。这种主/从方法能带来非常高的电流共享精确度,在满负载情况下,电电感器国家标准流共享精确度通常会高于3%。
图4 UCC39002负载共享控制器允许将多个独立电源并联
由于每一个并联电源都要求有一个负载共享控制器和数个外部分立组件,相对于压降或交错法而言,这种方法的组件数量要稍微多一些,并且成本也要偏高。另外,由于在启动期间,添加或移除单个电源时会导致一些问题,因此不建议将负载共享控制器与同步整流器一起使用。
主/从隔离式一次侧电流共享
可用于将多个电源并联的另一种技术是检测一个(主)电源的一次电流并将其与另一个(从)电源相比较。使用光学耦合器或变流器可提供一种在各电源之间进行电流信息通信的方法,同时保持隔离。由于能够以最低的成本达到较高的性能,因此变流器是最佳的选择。另外,与光学耦合器相比较,变流器具有较高的精确度。它们的精确度通常由匝比容差(其容差高于2%)和电阻容差(其容差通常为1%)来设置。光学耦合器的性能取决于其电流转换比的容差,最好情况下为30%。
结语
表1说明了四种负载共享方法的对电感器厂家比。压降法是其中最简单的方法,也是成本最低的方法之一,但其性能最低。此外,它还容许单点故障的发生。通常,性能最高的技术,即负载共享控制器,也是最为昂贵的解决方案。而使用交错式一次控制器或光学耦合器/变流器技术提供了一个成本和性能的折中方案。另外一些因素,如同步整流器的使用,以太网供电输入端的数量以及以太网供电输入端是否大功率电感必须被相互隔离等,在选择一种方法以前都需要考虑。在应用中使用合适的技术将会确保用户可以从以太网供电中获得最大的电力。
[DCDC]开关电源,MOS管发热严重驱动LED的开关电源,直流电源输入25V,4A,通过单片机的PWM信号控制MOS管,改变占空比来调节输出电压0~25v,电流保持不变。
其中单片机的PWM信号通过LM324放大到20V,接上负载后发现MOS
大功率LED恒流驱动电源设计及PCB实物测试实验 文章摘自:LED社区(https://ledlight.专注于大电流电感设计、制造:电话 :181-2638-2251/module/forum/thread-593055-1-1.html
)
为了驱动高功率LED,设计了一种基于隔离反激
采用DC/DC转换器提高RF PA系统效率从功率预算的角度而言,直接由电池供电的射频功率放大器(RF PA)是需要重点考虑的元件。传统上,CDMA/WCDMA蜂窝标准中使用的射频功率放大器都直接由电池供电,这种供电方式使系统很容易设计,但是,