图2 LV-OIF-11G-SR JESD204B、12.5-Gbps发送器的电气规范,可看出链路上共模电压终端的高度灵活性
该规范的一个优势是:与DC耦合使用案例相比,其可在链路上支持更宽泛的共模电压。这可降低有关JESD204B发送器及接收器(它们可能来自不同的厂商)的系统设计要求,因为它可根据需要提供电平移动。AC耦合数电感器厂家据通道的第二个优势是:可在发送器和接收器之间对共模噪声进行去耦,从而有助于缓解系统设计人员关于信号质量的顾虑。DC耦合更容易受到耦合在数据线路中的共模噪声影响。AC耦合的第三个优势是:其可降低来自多个厂商的不同发送器(Vtt)及接收器最终电压需求,从而可使接收器工作在其最佳共模电压下。这有助于JESD204B发送器与接收器在需要高度的电源电压灵活性的系统设计中以不同的最终电压运行。
此外,JESD204B接口还可针对单个链路上的多个转换器进行数据分区。随着链路速率提升至12.5 Gbps,更多的转换器可部署在相同的链路(对应不同变量的数据,请参见图3)上。这特别适合在单个封装中提供2个、4个、8个以及16个转换器的器件,同时这也是与LVDS接口相比的一大独特优势。LVDS可作为一个I/O结构,将一个单通道转换器做为终点/起点进行直接输入输出,但是不能明确定义一个方法来整合整个I/O中多个转换器的数据。有了JESD204B,就有了实现从多个转换器在相同的pin上串行发送综合数据的明确规范。每块器件数据的来源甚至不需要是真实的固定硬件转换器。它可来自一个“虚拟转换器”滤波器,该滤波器作为真实转换器的数字处理的一部分,输出一分为二,包括实数路径和复数路径。针对90度相移的IQ通信系统就可充分利用虚拟转换器的特性。一体成型电感器
图3 具有不同采样速率及通道数的转换器对比可显示出I/O数的差别。与工作速率为1Gbps的LVDS相比,工作速率为12.5Gbps的JES功率电感D204B接口只需其引脚数的1/10
JESD204B所提供的明确规范既支持从相同pin脚上串行差模电感发送多个转换器综合数据。
系统的最佳转换器
更高速转换器的带宽需求正在推动设计向更高级CMOS工艺节点发展,以降低功耗,提高性能。这种趋势将为其带来新的接口挑战。12.5 Gbps最高速度的JESD204B接口有助于解决其中一些问题,否则即便需再多的LVDS DDR通道,也无法满足更高采样速率下的带宽速度及性能需求。转换器数字接口的引脚I/O、耦合以及供电范围需求,将有助于为系统选择合适的转换器。
新型BiCMOS带隙基准电路的设计 在模拟及数/模混合集成电路设计中,电压基准是非常重要的电路模块之一,而通过巧妙设计的带隙电压基准更是以其与电源电压、工艺、温度变化几乎无关的特点,广泛应用在LDO及DC-DC集成稳压器、射频电路、高
小电流闪光灯的驱动设计如今,愈来愈多的手机、MP4、PDA等数码产品带有拍照功能,随着百万像素摄像头应用的普及,用户对照相及摄像的效果与质量要求也逐渐提高。为了在环境亮度较暗的情况下,仍能获得较好的拍摄质量,部分手机、MP
BTS660及其在电池智能检测与充电装置中的应用充电电池广泛应用于工农业生产、国防科技等领域,而充电电池的检测与充电是在充电电池使用过程中必须解决的问题。电池智能检测与充电装置就是针对充电电池的检测与充电而专门研发的一套装备。在设计过程中,充分利用