在模拟电感器生产及数/模混合集成电路设计中,电压基准是非常重要的电路模块之一,而通过巧妙设计的带隙电压基准更是以其与电源电压、工艺、温度变化几乎无关的特点,广泛应用在LDO及DC-DC集成稳压器、射频电路、高精度A/D和D/A转换器等多种集成电路中。随着大规模集成电路的日益复杂和精密,亦对带隙基准电压的温度稳定性提出了更高的要求。传统的带系基准电压源只能产生固定的近似1.2 V的电压,不能满足在低压场合的应用。电流模带隙电路采用正温度系数的电流支路(PTAT)和负温度系数的电流支路(CTAT)并联产生与温度无关的基准电流。然后让此电流在电阻上产生基准电压。电流模带隙结构可以得到任意大小的基准电压。本文提出一种新的电流模带隙结构并采用一阶温度补偿技术设计了一种具有良好的温度特性和高电源抑制比,并且能快速启动的新型BiCMOS
带隙基准电路。该电路结构简单且实现了低输出电压的要求。
1 带隙电压基准源的设计
1.1 传统电流模基准源结构原理
传统的电流模式带隙基准电路,在运算放大器的2个输入端加入阻值相等的2个分流电阻功率电感,输出基准由2个电流的和电流流过电阻获得。电路结构如图1所示。图1中,Q1发射区面积是Q2的N倍。由于放大器处于深度负反馈,A、B两点的电压相等。流过R1的电流为I1为PTAT电流,流过R2的电流I2为CTAT电流,则有:欲了解更多信息请登录电子发烧友网(http://www.elecfans.com )
通过合理选取R1,R2和N的值,可得具有零温度系数的输出电压Vref。通过改变R3可以得到不同的基准电压。
1.2 新型BiCMOS带隙基准电路的设计
常见的电流模带隙电路结构在运算放功率电感器大器的输入两端加入阻值相等的分流电阻,输出基准由2个电流的和电流通过电阻获得可以获得相对小的基准电压,这种结构的基准电路存在第三简并态的问题。由于第三简并态的存在使电流模基准电路的应用受到很大限制。本设计采用电流模结构带隙基准来得到任意大小的输出电压,并且通过特殊的结构消除第三简并态的问题。通过增加修调电路对输出电压进行微调,提高了基准源的精度。带隙基准源核心电路如图2所示。
图2中各个MOS管具有相同的长宽比。晶体管Q1与Q2发射极面积相同、Q3与Q4发射极面积相同、Q1与Q3的发射极面积比为1:n。Rs和Rt为修调电阻。放大器AMP1和AMP2处于深度负反馈。AMP1使得a和b两点的电压相等,而AMP2使得电压VR2等于Vbe3。通过M1、Q1、Q2支路和M2、Q3、Q4支路的电流相等设为I1。通过M6、R2支路的电流设为I2。可得到如下的表达式:
式中:I1具有正的温度系数,I2具有负的温度系数。I2和I2分别镜像到M3和M7求和后得到不随温度变化的基准电流。此电流通过R3,R4以及修调电阻Rs,Rt产生基准电压Vref。由于IC工艺的随机性,薄膜电阻会有(10%的变化,所以本设计用外部修调电路对输出基准电压进行精确控制,通过激光修调或数字电路控制修调电阻的个数可以对输出电压进行微调。作为一般结论考虑串联电阻Rs个数为x,并联电阻Rt的个数为y,得到:
通过式(6)可知,调节R2/R1的值,使Vref的温度系数近似绕行电感为零。通过增大串联电阻Rs个数x来增大Vref,而增加并联耦合电感电阻Rt的个数y达到减小Vref的目的。
安森美 8W数字至模拟转换盒电源参考设计随着技术的发展,世界各国纷纷加快向数字电视广播的转换过程。以美国为例,根据国会相关法案要求,2009年2月17日午夜美国所有全功率电视台将停止模拟电视广播,转向100%的数字广播。不过,美国新任总统奥
基于多处理器技术的涡街流量计0 引言 涡街流量计因其介质适应性强、无可动部件、结构简单等优点,在许多行业得到了广泛应用。传统涡街流量计采用模拟信号处理方法,抗干扰能力差,且一般采用4~20mA的模拟量输出,因此不能满足当今现场总
Web动态服务及控制在物联网中的应用设计引言随着网络技术的不断发展,嵌入式系统将不断地和网络相结合。嵌入式Web技术是计算机领域研究的热点,其优点是开发成本低、通用性强,能运行在8位或16位MCU环境中,其丰富的Web用户图形界面使得嵌入式