软件无线电是一种基于宽带A/D器件、高速DSP芯片,以软件为核心(Software-Oriented)的崭新的体系结构。其基本思想就是将宽带A/D 尽可能地靠近射频天线以便将接收到的模拟信号尽可能早地数字化,尽量通过软件来实现电台的各种功能。通过运行不同的算法,软件无线电可以实时地配置信号波形,使它能够提供各种话音编码、信道调制、加密算法等无线电通信业务。我们知道信号失真是长期困扰模拟处理的难题,如本振频率漂移、相位噪声、混频产生的虚假信号、放大时产生的谐波以及互调、机内噪声等问题。尽管设计人员想方设法,但结果并不能令人满意,而软件无线电技术简单有效地解决了这些问题。在数字化之后,本振、混频、放大、滤波电感电容滤波器都仅仅是数字运算,不会产生谐波、互调等虚假信号。与传统的模拟方式相比,软件无线电具有灵活性、适应性和开放性等特点,被誉为无线电领域的又一次革命。
1 接收机总体设计
由于受器件水平的制约,直接对射频采样处理还有一定难度。在保留软件无线电通用、灵活、开放的前提下,采用了中频数化方案[1],整个接收机的结构框图如图1所示。
该接收机接收信号频率范围:10~100MHz,为防止频谱混叠,前端电调谐滤波器分8段滤波器,由8031控制选用。第一本振LO1采用数字锁相环产生所需频率,通过预置,可产生正弦信号频率范围:1360~2350MHz,步进值10Hz,电调谐滤波器与一本振互动联调。混频后,将信号通过一中心频率为 1350MHz的带通滤波器后,进行二次混频。第二本振LO2产生信号的频率固定设置为:1371.4MHz,因此中频信号为:21.4MHz,通过 AGC控制输出信号强度范围为:-50~-10dBm/50Ω。
2 中频数字化单元设计
该单元是接收机的核心部件,主要完成几种信号(AM、FM、SSB、电感器厂家CW、FSK、BPSK,QPSK)的解调工作,同时负责对模拟前端提供AGC控制用电平强度值和AFC控制用载波频率误差值。8031主控电路板则要为中频数字化值单元提供:信号类型、中频带宽、AGC时间常数、BFO值、PSK信号波特率等控制命令。中频数字化处理单元硬件系统大体构成如图2所示[1]。
2.1 数据采集部分
该部分电路主要由数控放大器和模/数转换器AD6640构成,负责完成数据采集工作。固定增益放大器(18dB)的中频输入信号为:21.4MHz,-50~-10dBm/50Ω(0.7mV~70mV),输出为-38dBm~+2dBm/50Ω(2.8mV~0.4V)。 AD6640是AD公司生产的新一代模数转换器件,分辨率12bit,输入动态范围±1V,采样速度可达65Msps,在5V供是时功耗仅为710mW。注意A/D前采用固定增益放大电路,并不影响对模拟接收机的AGC输出。因该放大电路的增益是已知的,检测出信号电平后可以倒推出放大前的电平变化情况。至于采样速率的确定,此处既可以采用过采样又可以采用欠采样技术。所谓欠采样技术就是对于带通信号(频率范围:fL<f<fH)而言,抽样频率只要满足:
2fH/K≤fs≤(2fL)/(K-1)
K 为整数且2≤K≤fH/(fH-fL),fH-fL≤fL)就可保证采样后的频谱不产生折叠。这对于减小运算量是很有好处的,但对接收机抗混叠滤波器要求较高。考虑到HSP50214B处理速率高速65MSPS,可以采用过采样技术。根据理论上的ADC的信噪比计算公司:SNR=6.02M+1.7dB+ 10log10(fs/2fb)可知:抽样速率每增加一倍,信噪比大约可提高3dB。因此,在速率允许的情况下,我们仍决定采用过采样技术,采样频率 50MHz。
2.2 数字下变频单元
手机智能天线测试系统开发及应用本文描述了一项由德州仪器公司(TI)发起、弗吉尼亚理工学院和州立大学的弗吉尼亚科技天线组(VTAG)和移动便携式无线研究组(MPRG)合作完成的研究项目。 该项目重点确定智能发送和接收手机天线的可行性
基于AS3645的LED闪光驱动设计方案Austriamicrosystems公司的AS3645是超小型高效单/双路LED闪光驱动器,它的DC/DC升压转换器工作频率高达2MHz,具有软起动功能,闪光停止,过压,超稳,欠压和LED短路保护功
汽车电子自适应频率调制DC/DC降压变换器的开发目前,高频、高效的DC/DC转换器在汽车电子系统中的应用越来越多。高开关频率可以使用较小的功率电感和输出滤波电容,从而减小系统的体积,提高紧凑性并降低成本。高工作效率可以延长汽车电池的使用时间,降低系