电源装置是电子电气设备中所不可缺少的部件,开关电源以其效率高、体积小、重量轻、电压适应性好等优点,受到相关行业的青睐。但目前存在的缺陷是电磁骚扰大,对环境或对其他设备造成不利影响。目前对于可变负载的开关电源,笔者所了解到的产品最低输出噪声电压也在70 mV以上。设计低电磁骚扰的开关电源,也就成了许多设计人员的希望,为此提出了种种方法。本例设计要点不同于常规技术,而是采取了从源头上对电磁噪声进行消除,再结合一些常规措施。将电源输电感器的种类出端口的噪声电压降至20 mV以下,显著提高开关电源的电磁兼容性指标。
1 开关电源电路结构与降噪原理
该开关电源的设计目标是稳定20 V输出,输出电流0~2 A可变,用于音响系统。为了突出降低电磁噪声的处理技术,简化电路,用单片开关电源芯片TOP224Y进行设计。TOP224Y内部已包含了PWM调制所需的所有电路以及激励管输出,由它激励变压器,开关频率为100 kHz,内部MOS激励管的耐压为700 V,输出功率小于45 W。电路如图1所示,该电路可以获得更大的输出功率,只需更改部分器件。图1中左边的电路R1,L1,D1,C1至C7是常规的共模滤波和整流电路模压电感器,获取约300 V的直流电压供DC-DC变换电路使用;最右边电路L5,C11等是普通的LC滤波电路;IC2,D8,R9,R10组成电压反馈电路,形成闭环结构,稳定电源输出电压;中间部分是DC-DC变换器,降噪声的关键是对这一部分的电路进行适当处理。
对于中间部分电路而言,TOP224Y作为PWM控制、激励,都是常规处理。控制端C的工作电压取自变压器的反激励电压,其中D3是整流管,D4是发光二极管,用作指导灯。C端的反馈信号来自IC2的输出。芯片的漏极输出端D连接变压器和R1,D2,其中R1是半导体压敏电阻,与D2一起组成芯片限压保护电路,防止芯片因过压而击穿。该项电路的激励方式采用以正激励为主的正、反混合激励式,变压器有4个绕组,其中2个是基本相似的输出绕组n3,n4,它的同名端关系如图2所示。
DC-DC变换后的整流管使用了三只:D5,D6和D7,没有独立设置续流二极管,不同于其他电源电路。D5为续流而设置的复用二极管,D6和是正激励脉冲整流二极管,D7是反激励电压整流二极管。L4是DC-DC变换后的第一级滤波电感。在正激励期间,变压器输出绕组n3经D6,L4输出电流,第一级滤波电感L4中电流i4增大,同时,变压器自身利益的激励磁电流i1也在增大。
当正激励结束马上就进入反激励阶段,滤波电感L4中电流i4将从原值逐步减小。而变压器中也会保持励磁电流,但它是多绕组结构,励磁电流可以出现在任意一个绕组中,各电流方向以维持原磁场方向为准。如果控制当时的滤波电感电流i4>n1i1/n4,可以将变压器磁芯中的励磁电流全部转移至n4绕组。也就是电流i4流经变压器输出绕组n4,除了维持变压器磁芯磁场,尚有大电流电感多余,其余量在n4与n3中按匝数比分配。此时,二极管D5马上导通,二极管D6继续导通,而二极管D7仍然截止。变压器绕组无感生电压,不放释放磁场能。随着滤波电感储能的释放,电流i4逐步减小,直至i4=n1i1/n4时,D6进入截止状态。可见D6没有被除数强迫截止,处理得当,可以消除其关断噪声。接着,变压器开始产生反激励电动势而释放储能,二极管D7开始导通,变压器的反激励电压被限制。直到变压器储能释放尽,一体成型电感器等待下一个周期的激励。
按照这一方法处理,可以消除整流二极管D6的硬关断噪声,但变压器漏感造成的芯片激励管的硬关断噪声仍然存在,这里的辅助绕组可以起到一定的吸收作用。对于整流二极管的硬开通噪声,仍采用RC电路吸收能量,降低噪声,如图1中的R7,C10电路。
2 主要器件参数的设定
2.1 确定变压器参数
电路的正激励电压U为300 V,功率电感器根据芯片的反向耐压参数和可靠性要求,反激电压设为200 V。开关周期为10μs,因此,其中正激励时间为t1=4.0 μs,反激励时间为t2=6.0 μs。按照15 W反激励输出功率计算,每一个周期里变压器储能应该达到150μJ,即Li1m2=300μJ而Lilm=U1t1,所以有:
开关电源原理与设计(连载六)反转式串联开关电源储1-3-2.反转式串联开关电源储能电感的计算反转式串联开关电源储能电感的计算方法与前面 串联式开关电源储能滤波电感的计算 方法基本相同,计算反转式串联开关电源中储能电感的数值,也是从流过储能电感的电流
汽车仪表板用MCU的技术动向汽车仪表板是由各种仪表、指示器,特别驾是驶员用警示灯和警报器等组成。传统应用的是机械式的速度计、油量计和里程表等,但现在则以步进马达和使用LCD 的仪表板为主流。最近,中、高档车用仪表板已由大屏LCD
新型通用异步收发器MAX3100在单片机系统中的应在MCS-51单片机应用系统中,串行数据通信通常采用同步/异步接收发送器8251,但因8251的通信波特率不高,且芯片不能应用于晶振较高的系统,这就使得要求高运行速度、高速收发数据的系统无法应用825