近些年来,在世界范围内的政治和经济领域中,人们对可再生能源态度的关注日益增加。虽然在去年全球经济危机中,很多可再生能源项目被削减,但是太阳能设备未来几年的安装增长率预计可能在30%~40%之间(如图1所示)。
图1 太阳能安装市场增长预期
这种增长将包括整个供电领域,从巨大的兆瓦级中心发电站到遍及全球的住宅屋顶太阳能发电系统。太阳能电池单体和功率电子器件的效率正不断地攀升。同时,新型的系统拓扑架构和器件也持续将太阳能发电系统的性能提高到新的水平。
到目前为止,卓越的太阳能电池单体材料是单晶硅pn结单体(如图2所示)。这是可以广泛获得的材料,而且能够在众多应用领域中取得成本和效率之间的折中。高功率的聚能器系统可以选择使用效率高达25%的多结单体,但成本比较高。而低端系统可以选择效率比较低的多晶或薄膜系统,但制造成本却非常吸插件电感器引人。
图2 卓越的太阳能电池单体材料是单晶硅pn结
常规太阳能电池技术
典型的太阳能发电系统包括两个功率单元(如图3所示),前端单元是升压转换器,可以将太阳能面板输出的电压提升到直流总线电压,该电压必须足够高以经过逆变器输出到线路。
图3 常规太阳能发电系统主要包括两个功率单元
这个系统的输入电源是太阳能电池单体阵列,它可能是一个平板、一串平板,或并联和串联在一起的组合平板。每个平板通常产生50~60V的电压,然后串联到一起来达到升压转换器所期望的直流电压。
太阳能发电系统也具有一种最大功率点跟踪(Maximum Power Point Tr绕线电感acking:MPPT)机制。任何太阳能电池单体或串联的电池单体都具有功率最大时的输出电压,当输出电压降低时,电流不会增加以补偿功率的恒定,否则,电压升高时电流就会降落得太快。这就需要有一个计算单元用于计算电压和电流的乘积,并确定其最大功率点,以此控制输出电压达到该值。
在串连的电池单体中,输出电流是由串联链路中输出电流最低的那块单体决定的。如果光照亮度发生变化,或者任何一个电池单体被部分遮挡了或变得透光不强了,所有其他电池单体的输出电流也都将受到限制,从而使输出达不到峰值功率。
有许多种方法可以弥补这种情况,完全依赖太阳能发电系统的设计类型。在大型的中心发电站,电池单体通常排列在没有遮挡的开放区域,甚至会追踪太阳在天空的角度,来在任何时候都能够维持最大的直接光照。
然而,在稍微小一些的太阳能发电系统中,太阳能电池阵列能够以不同的角度重新排列来获得最大最直接的光照。在这种情况下,整个阵列被划分为不同的区域,每个区域可以独立工作,它们输出的直流电压可以叠加。控制器能够将电流输入到输出功率较低的区域来平衡和优化整个太阳能电池阵列的输出电流。
新技术开发
在光伏能源领域,一种被称为微型逆变器的新发明是非常有前途的,这是因为它可以提高安装的效率,并有助于充分利用从每个面板所获得的所有能量。在美国,小型到中型设备的安装非常普遍。因此,每片太阳能面板接有250~500W的逆变器,并将不同的直流输入电压转换为固定的交流输出电压。
中心逆变器可以被设计成具有更窄输入电压范围,更高驱动效率,因此输出增益得到了倍增。这种设计的挑战就是太阳能电池面板需要满足苛刻的环境条件,能够耐高温和温度循环冲击。因此,利用像SuperMOS和Stealth二极管这类鲁棒性非常好的半导体器件就能够达到非常低的失效率。对于非隔离的单相工作形式,功率器件的耐压通常需要达到600V。
另一种方法就是采用H桥接逆变器串联形成合适的尺寸,并将每个逆变器的一相连接到串联链路中下一个逆变器的另一相。通过这种方式,运用合适的控制技术,H桥接就可以形成多个逆变器的组合。由于每个太阳能电池面板在电气上与下一个绝缘,它们的输出就可以叠模压电感加在一起,并且功率器件的耐压可以维持在低于100V的程度。
还有许多其他类型的拓扑结构也是可能用在光伏能源领域的,有一些已经在使用了。一种三级逆变器就是把IGBT和FET器件串联在每个供电母线和线路之间,并在二者之间的分支上通过二极管钳位到中性相上。由于这种逆变器本身的效率可以超过98%,所以在中到高功率应用中逐渐普及。
便携式智能驱动器让PCB布局更规整小型便携式电子系统一直在不断向前发展,诸如移动电话、PMP(个人媒体播放器)、DSC(数码相机)、DVC(数字摄像机)、PME(便携式医疗设备)和GPS(全球定位系统),功能特性一代比一代丰富。随之而
基于AD9516的高速四通道时间交叉采样时钟的设计1 引言 随着数字信号处理的高速发展,模拟信号的处理已被数字化处理代替。但对数字系统分辨率的日益提高,作为模数转换系统的核心一A/D转换器,其精度和采样率也随之提高。但精度和采样率是一对矛盾体,很难同
旁路电容和去耦电容 去耦电容(decoupling),也称退耦电容,是把输出信号的干扰作为滤除对象。
去耦电容用在放电电路中不需要交流的地方,用来消除自激,使放大器