图3: 电压控制模式的DC/DC降压变换器原理框图
电路采用具有降频功能的电压型PWM控制模式,输出电压误差小。在图中,PWM控制部分是由误差放大器和PWM比较器组成,反馈电压和基准电压比较后,放大差值以产生一个误差信号,并经过一定的零级点补偿后,提供到PWM比较器的一端输入,同时比较器的另一端输入是振荡器电路提供的一定频率的脉冲时钟信号。
这个信号将被传输到后端的逻辑电路部分,该部分包括RS触发器,以及包含多种保护信号的相关逻辑,它通过接通和断开驱动电路来控制电源开关的状态,从而设置变换器的工作频率,设定功率管的插件电感最大占空比。图中OSP比较器,主要作用是,当输出电压过低,效率下降时,经过OSP信号控制振荡器,以降低PWM比较器输入端的时钟信号,从而在相同情况下提高变换器的转换效率。
电路中采用双电源,Vdd由输入电压Vcc通过一个高压线性稳压器转换而成,为3.3V,而Vcc为输入高电压,用于供给使共模电感器能迟滞电路、带隙基准源、Vdd生成电路、过流保护以及驱动电路,这些电路中的MOS管,采用高压DMOS器件,防止击穿;而其他与输入电压无关的电路,则有Vdd供给,其中的MOS管,采用CMOS器件。
目前峰值电流控制模式DC/DC转换器的应用更广泛,它的原理框图如图4所示。
图4: 峰值电流控制模式的DC/DC降压变换器原理框图
对应于电压控制模式,电流控制模式的DC/DC转换器以几乎无穷大的开环环路增益来调节DC/DC的输出电流,其实是一个高输出阻抗的电流源。如图4所示,在电流控制模式的DC/DC降压变换器中,快速高增益的电流环路和慢速的电压控制回路嵌套使用,电感电流与斜坡补偿后的锯齿波合成的信号和电压误差信号相比较产生控制信号,当输出电压跌落时工字电感器,控制功率管打开向负载提供更多的电流来保持输出电压的稳定。电流控制模式的DC/DC测量电感电流,将输出变为恒流源输出,使DC/DC的输出级由电压模式的双极点系统转变为单极点系统,从而更容易进行补偿,提高稳定性。
(二)振荡器的设计
振荡器电路在DC/DC集成电路中有广泛的用途。振荡时钟为内部电路提供开关脉冲的同步,且衍生出锯齿波,提供给PWM比较器。是电压模式和电流模式DC/DC转换器的基本单元。图5为本文设计的振荡电路,设计中采用恒流充放电结构,充电电流为I1+I2(降频时为I1),放电电流为I12+I13(降频时为I12)。
图5: 振荡频率受大电流电感器控制的振荡电路
从图5中可知,M1、M2为电容充电,M9为电容放电,这些决定了振荡器的时钟频率。
首先,假设输出振荡电压与充放电电流成正比。基于这个假设,偏置电流就可以确定。如果希望频率为800K(T=1.25us),上升时间为总周期的90%(1.125us),而要求输出锯齿波SAW的峰峰值Vp-p为1V.那么,充电电流为
公式3
其中C为C1的电容值,T为振荡周期。
从电路图可以看出,振荡波形的转折点可以由下式决定:
公式4
图6为振荡器的输出波形,从图中可以看出,振荡波形在0.6V至1.8V范围内波动,符合设计要求。
图6: 振荡器的输出波形
当输出输入电压比值低于一定值(0.2)时,说明此时控制脉冲的占空比很低,效率下降,此时通过低比值保护电路,产生OSP信号,将整体电路的频率下降。从电路图可以看出,当OSP通过控制电路变为高电平时,则M0关闭,而M1与M2的宽长比为4:1,此时的充电电流变为原来的1/4,那么充电时间变为原来的4倍,这样输出振荡波的频率变为原来的1/4,即200KHz,提高电源的转换精度。
MAX275x系列单片集成2.4 GHz压控振荡器1 概述 MAX2750/MAX275I/MAX2752是独立工作于2.4 GHz频率的压控振荡器(VCO),将元器件集成在一个芯片上,使外围器件缩减为几个旁路电容。该器件随输入控制电压的变化而提供相
基于DSP的嵌入式视觉客流检测系统0 引 言 近些年来,随着电子元器件价格的不断降低和数字信号处理器(Digital Signal Processor,DSP)性能的不断提升,以DSP为核心的嵌入式实时图像处理技术在目标跟踪、机器人导
知道这些,学习负电源就是小意思 文章摘自:凌力尔特技术论坛-与非网(https://linear.专注于大电流电感设计、制造:电话 :181-2638-2251/module/forum/thread-593636-1-1.html
)
大多数电源设计人员都知道怎