摘电感厂家要:本文详细分析了65W 谐振工作模式的反激变换器在全电压输入范围内的关键元器件的损耗,给出了全电压工作范围内变换器效率的计算曲线和实测曲线,对于理论分析变换器效率及提高谐振工作模式变换器的效率有指导意义。
关键词:UCC28600;反激变换器;谐振;效率;
1.变换器输入输出电气参数:
本文的分析和设计基于65W 输出的笔记本适配器,输入直流电压Vin 为: 100~370V DC;输出直流电压电流为: 18V/3.6A 。根据输入输出条件,设定低压满载是65KHZ 工作频率。按变换器的常规设计得到:Np: Ns=6:1 ,Lp=290uH。其他相关设计参数及原理图可参考文献2 及附录。
2.主要元器件的损耗分析
2.1.全范围输入电压时占空比及工作频率的变化
变换器全范围工作在准谐振谷底开通模式,所以满足Flyback 基本的输出输出公式,可根据如下公式,计算得到满载时占空比在全电压输入时的变化规律,其中D(Vin)为占空比D 和Vin 的函数关系,其变化规律如图1 所示,其中Vo 为输出电压,Vd为副边整流肖特基的导通压降:
绕行电感可以按如下的计算方式得到全电压输入时变换器工作频率变化规律如图2 所示,其中Lp 为变压器原边电感量,Ipk_p(Vin)为原边峰值电流和输入电压的函数关系, f(Vin)为变换器工作频率和输入电压的函数关系,Ton 和Toff 分别为导通和关断时间。
2.2.Mosfet 的损耗分析
如图3 为变换器实际工作在谐振模式时Vds 的工作绕行电感器波形,可见Mosfet 开通时,变压器的原边电感Lp 和Cds 之间谐振,开通时电压谐振到Vin-(Vout+Vd),此时电流从零开始增加,大大的降低了开通时的损耗,这是谐振工作模式的优势。
Mosfet 的损耗分为4 个部分,关断损耗,导通损耗,开通损耗及驱动损耗,在该设计中使用的SPP11N60C3 Mosfet,可以根据Mosfet 的全范围输入时电压电流的变换规律,计算 分析Mosfet 的全输入范围的损耗分布,其中驱动损耗主要和工作频率关系较大,导通损耗需估计其热效应的影响,按结温100⁰C 估算,图中可见关断损耗随输入电压增加而增加。
2.3.整流桥及副边整流肖特基损耗分析
在本设计中,副边整流肖特基选用STPS20120CT,100⁰C 时,VF=0.6V。如下图5 显示整流桥及肖特基的损耗在全范围输入时的变化,其中BD(Vin)和 D(Vin)分别为整流桥和肖特基的损耗。
2.4. 变压器损耗分析
本设计中,使用RM10 的磁芯,该磁芯有效截面积较大,漏磁较小,在满足饱和磁通余量的情况下,设计匝比为N1:N2=36T :6 T,其中可查的,可以根据如下公式得到全范围最大磁通量的变化规律如图6,可见在输入电压最低的时候,磁通量为最大值。所以在设计时需要保证满载输入电压最低时,保证此时磁通量小于饱和磁通并留有一定的裕量。
在满足集肤效应和邻近效应的基础上,使用三明治绕法,漏感较小,原边为Φ0.3*3,副为Φ0.5*4,如图7 显示了其在全范围输入的情况下其损耗的变化规律。其中 Pwinding 为变压器的铜损,Ploss_core 为铁损,铁损主要和磁芯的材质关系较大。
e络盟携手KEMET为亚太区提供更广泛无源元件产品 KEMET为CEM及OEM提供整卷电容器产品
[中国 – 2014年7月21日] e络盟日前宣布进一步扩展其KEMET电容器产品线,涵盖最新系列超级电容器、电感器及信号继电器,适用于汽车、
[开关电源]关于推完电路mofet导通压降的问题开关电源电路是推完拓扑,用示波器测量mosfet管压降时,发现波形结果如下图;
描述:
当mosfet开通时,mosfet的电压迅速降低,但是后一段又缓慢减低,出现图中圈内的波形,这是什么引起的
充电疑惑我有一个产品要给平板充电,我用的是明伟开关电源2A/5V,给平板充电时,测了只有500mA,
后来平板换到电脑USB口充电,测得电流还是500MA
我再用平板自带的充电器充电,充电器是1.5A/5V