在电感式传感器改进的结构中,具有高增益和低带宽的运算跨导放大器(OTA)被用作主要的误差放大器。而这个放大器决定了LDO的主要性能参数。第二个放大器也是基于OTA,但具有相对较小的增益和较大的带宽,主要用于监测LDO的输出。两个放大器的输出并联在一起,推荐结构如图5所示。
图5:两个误差放大器并联在一起的LDO结构。
主误差放大器A1为一款标准的两级放大器,用于确保LDO的良好性能。由于A1并不是用来快速驱动功率晶体管MP的,因此可以采用A类输出级。反馈电阻Rf1和 Rf2决定了LDO输出电压的大小。
第二个放大器具有高带宽和AB类输出级,可对功率晶体管的寄生电容快速充电。放大器A2的输出连接到放大器A1的输出和功率晶体管MP的栅极。
LDO输出连接到A2的同相输入端和低通滤波器RC,而低通滤波器的输出则连接到放大器A一体电感器2的输入。这种连接方式在稳态情况下将在A2的输入间产生零电压,从而使LDO的参数不受放大器A2的影响。在LDO的输出负载快速变化时,如果低通滤波器的时间常数大于负载瞬变变化的时间,那么A2的反相输入端将不会发生电压变化。A2的同相输入跟随LDO的输出电压,并开始对变化作出补偿。由于放大器A1的功率电感带宽很窄,因此它会明显滞后一段时间才作出反应。经过稍长于低通滤波器时间常数的一段时间后,A2再次进入稳态,且不会对LDO的参数造成影响。图6所示为运算跨导放大器A2的结构。图中只有一个增益级和AB类输出级。带宽由偏置电流Ib确定。
图6:具有一个增益级的AB类放大器。
图7所示为推荐LDO结构的AC分析。图7(a)为推荐LDO结构的简化原理图,图7(b)是从图7(a)转化而来的简化传递函数的等效框图。这样就可以建立推荐LDO运行的幅度响应,如图7(c)所示。在低频情况下,LDO的运行主要由主放大器A1决定。但在较高的频率下,由于出现了负载瞬变,因此LDO的运行便改由快速放大器A2来决定。由于RC滤波器能够隔离并联放大器A1和A2的运行,因此他们不会在同一高频电感器时间工作。
图7:推荐LDO稳压器的AC分析 (a) 简化原理图 (b) 等效框图 (c) 幅度响应。
图8所示为推荐LDO结构的负载瞬变仿真结果。左图为放大器并联时LDO的输出电压,而右图为单一放大器运行时的LDO输出电压。从图中可以看出,放大器并联运行时的输出电压变化幅度比用单一放大器小两倍。
图8:并联放大器运行(左侧)和单放大器运行(右侧)时的仿真负载瞬变曲线。
试验结果
推荐的LDO稳压器电路采用0.5微米的CMOS工艺制造,占用面积为0.28mm2。
表1列出了测量结果,其中最大电流消耗为20μA。经过进一步优化能使电流消耗更低,但是芯片的面积会增大,从而对负载变化的反应变慢,并对LDO稳压器的其他主要参数带来不利影响。
表1:推荐LDO稳压器的主要参数。
图9为测量所得的负载瞬变响应曲线。其中负载在1μs内从最大值变化到1mA或从1mA变化到最大值时, LDO稳压器所产生的输出电压尖峰等于60mV 。假如负载变化的速率较慢(10μs),那么LDO稳压器输出的电压变化可明显减少至18mV。
图9:测得的负载瞬变响应曲线。
在10kHz频率和LDO输出负载为20mA时测得的电源抑制比(PSRR)为-75dB,而在10Hz到100kHz频率范围内所测得的等效功率电感输出噪声等于10μVRMS。
本文小结
试验结果表明,所推荐的LDO稳压器由于具有较优的负载瞬变响应性能,因此在低电流消耗的LDO稳压器中具有无可比拟的优势。
最常见的LDO稳定性问题现在可以通过两个误差放大器的并行连接得以解决。推荐的LDO结构具有以下优点:
1.LDO的直流和低频参数可以由稳定且容易设计的双增益级A类放大器决定。
基于AVR的锂电池智能充电器的设计与实现 1 引言 锂电池闲其比能量高、自放电小等优点,成为便携式电子设备的理想电源。近年来,随着笔记本电脑、PDA,无绳电话等大功耗大容量便携式电子产品的普及,其对电源系统的要求也日益提高。为此,研发性能稳
【labview中实时画图】各位大神们,在labview中能实现实时画图功能吗?就是实时画正方形,圆等简单图形,但是画的过程是可视的,不能一笔画出来。请问怎么实现呢?
给你吧试试看¥%……%&*()
[充电器]求前辈指点,太阳能板阴天充电电流过小现遇到麻烦,用太阳能板给12V,4.5AH蓄电池充电,在阴天的时候,太阳能板给电池直冲,测得充电电流只有几毫安,远远达不到要求,现有什么解决方案让在阴天时充电电流可以满足要求,至少也要