目前市场上低电压、低耗电的微控电感器厂家制器(MCU)至少需要1.8V的工作电压,因此也至少需要两颗串联的碱性电池来工作。然而,现在Silicon Labs推出全新的微控制器系列仅需提供0.9V工作电压,一颗碱性电池即可实现。
为了采用单电池工作,你可以在空间大小一样的情况下,用一颗较大的电池取代两颗较小的电池,同时增加产品的电池寿命。另一个作法则是不采用串联,而以并联方式连接现有的两颗电池,如此也能有效延长产品的电池寿命。但并联的电池连结方式需搭配特定机制以防止这两颗电池逆向连结,除此之外这不失为是一种将电池寿命最大化的好方法。
另一个可能性则是拿掉一个电池,如此能让产品更小且更便宜。也许你会认为拿掉一个电池会让产品电池寿命减半,但了解了下面的说明,您就会明白未必如此。
单电池工作
以单电池工作来说,除了要提供0.9V的电压给微控制器之外,有些元器件必须要提供1.8共模电感V以上的电压才能正常工作,为了解决此问题,必须另外增加DC-DC升压转换器。然而,就电池供电的嵌入式系统而言,该独立的方法有若干限制。为求将电力消耗降至最低,在不需要的时候,DC-DC转换器最好能停止工作。然而,若关掉DC-DC转换器,则微控制器就失去了供应电源,并且无法保持实时时钟,或是在没有额外输入电压的情况下便无法重新启动系统。更糟的是,当DC-DC失去作用时,微控制器将失去整个RAM的内容。然而,如果不停止DC-DC的工作,则即使微控制器是在睡眠模式,系统的待机电流仍会偏高,通常会超过20uA。
除此之外,还必须考虑DC-DC转换器和微控制器的工作效率。大部分的独立式DC-DC方案都被设计为传送至少150mW(在大部分情况下会更多)给负载时的效率为最高,而在较小的负载时效率就会差许多。相对而言,一个典型的微控制器从供电端所汲取的电流会小于30mW,而这会造成DC-DC效率仅为50~70%。
所以,是否有其它更有效的解决方案?也许你可以试试将一个最佳化、低电源的DC-DC转换器和微控制器集成到同一个芯片上。这能立即减少系统成本和电路板空间。如果你还能利用低至0.9V的低输入电压维持RAM内容并操作实时时钟,则该微控制器还能控制它自有的供电系统。若你还针对标准型MCU的外围和功能进行标准化,如待机模式、睡眠唤醒及快速代码执行等,以达到最低的漏电损失和功耗,则该装置便能支持单电池工作,同时还能拥有与双电池工作相当的电池寿命。
集成式解决方案的优点
Silicon Labs新近推出的C8051F9xx微控制器系列所采用了集成式解决方案。该方案将高度优化的增压DC-DC转换器集成至微控制器中,其能将0.9~1.5V之间的电池电压增至1.8~3.3V之间的可编程输出电压。升压后的电压会被用于微控制器的I/O管脚及外围。如图1所示,通过使用一个优化的65mW DC-DC转换器,此转换器依然可保持80%至90%的高效率。
不仅如此,由于DC-DC转换器能供应65mW的完整输出,因此升压后的输出电压也能被用来提供外部元器件所需的电压。这样,将能避免与接口连接相关的潜在问题。如连接至其它电感器厂家较高电压IC或传感器、驱动3V电压LED,或提供足以驱动LCD或OLED显示器的电压。
为进一步改善系统效率,此新产品系列的微控制核心和数字外围皆是以内部统一的1.7V电压工作,在25MIPS的速度时仅消耗170uA/MHz。图2为此全新微控制器系列的电源架构简单示意图。
图2:C8051F9xx电源架构
功能效率
当然,不是提供高效率的集成式电源供应系统就够了,不同的工作模式和转换次数,以及模拟、数字和通讯外围都会影响系统的整体功耗。
低电源微控制器最需注意的技术规格就是待共模电感器机和工作模式功耗的数据。如上所述,制造厂商通常会列出每兆赫兹多少毫安(mA/MHz)的数值来计算该设备所使用的各种时钟速度。
想用电源尝试又很害怕!!我想实验一个电热丝,卖电热丝的人说它需要300W的电源,电压10V以下(我不明白怎么就不能高于10V呢?),交流直流皆可。
我手头正好有一个250W24V的稳压开关电源,就是那种外壳上有很多孔
电子线路设计中电磁兼容设计分析1.1电子线路设计准则电子线路设计者往往只考虑产品的功能,而没有将功能和电磁兼容性综合考虑,因此产品在完成其功能的同时,也产生了大量的功能性骚扰及其它骚扰。而且,不能满足敏感度要求。电子线路的电磁兼容
传统印刷与数码印刷的比较数码印刷是印刷技术数字化和网络化发展的新生事物,也是印刷技术发展的一个焦点。其数字化过程可以直接从计算机到纸张或印刷品,工序间不需要胶片和印版,无传统印刷的繁琐工序。