工作在125或134kHz低频(LF)或者13.56MHz高频(HF)范一体成型电感围内的电感回路无源RFID系统,其工作距离仅限于大约1m的范围。UHF RFID系统工作在860~960MHz以及2.4GHz的工业科学医疗(ISM)频段。其具有更长的工作距离,对无源标签而言典型工作范围为 3~10m。标签从阅读器的射频信号接收信息和工作能量。如果标签在阅读器的范围内,就会在标签的天线上感应出交变的射频电压。该电压经过整流后为标签提供直流(DC)电源电压。通过调制天线端口的阻抗来实现标签对阅读器的响应。这样一来,标签将信号反向散射给阅读器。
阅读器通过位速率范围在26.7至128kbps之间的双边带幅移键控(DSB-ASK)、单边带幅移键控(SSB-ASK)或者反相幅移键控(PR-ASK) 调制来实现对射频载波的调制,将信息发送给一个或多个标签。采用脉冲间隔编码(PIE)格式来实现调制。此时,数据通过对载波在不同的时间间隔进行脉冲编码来表示0或1b,并将其发送给标签。通过频带分配和数据协议的标准化,EPC-Global最先通过统一世界范围内的不同系统来降低整体成本。这一行动将采用相对廉价的CMOS技术来抵消设计新的复杂IC所产生的高昂费用。
采用更新的工艺节点预计将减少芯片面积的20%。由于涉及到数量,降低系统成本的努力主要集中在无源标签的单位成本。其目标是将成本降低一个数量级,减少到每个标签仅几美分。
无源标签的调制不同于一般的射频通信方案,这是因为阅读器的信号还为标签供电。在无源反向散射系统中,距离是通过标签可以获得的辐射功率由前向链路(阅读器到标签)来决定的。新式的Gen-2标签的设计目标是将阅读距离最大化,并同时实现与该协议的兼容。距离方程(公式1)决定了理论距离,此时标签将接收到足够的电源来对阅读器做出响应。
其中,EIRP=有效各向同性辐射功率、Ptag=标签天线输出所要求的功率、Gtag=标签天线增益、λ=射频载波的自由空间波长。
关闭阅读器电源减少了标签所获得的电源。由于该调制方案中信号在大部分时间处于其最大值,因此具有极大优势。然而这种调制效率极低。这导致相对宽的信道或低的数据速率。
每个E电感器原理PC Class 1 Gen 2指标,阅读器传输的功率高达4W EIRP。在950MHz的载波频率下,信道损耗在3m距离处是36.9dB。那么,标签天线的功率是-0.88dBm。
在这一少量的可用功率和低直流功率转换效率工字电感(整流器效率平均约为20%)下,CMOS标签电路一般工作在仅几微安电流的一伏特电压下。由于无源RFID标签必须具有低成本并节省功耗,将标签设计为采用相对简单的幅度调制(AM)技术来实现从阅读器接收信号。UHF RFID标签模拟前端包括了几个内部模拟子模块。该模拟前端实现了DC电源、接收信号检测/解调制和发送调制等全部的模拟处理。图1中的模块图表示了典型 UHF RFID标签的模拟前端以及数字状态机。
基于OMAP5912远程视频监控系统的设计引言 目前视频监控系统已广泛应用于各领域,数字化和网络化已成为视频监控系统的发展方向。本设计采用OMAP5912 处理器[1]设计和实现了基于B/S模式的远程视频监控系统,不仅解决了传统模拟视频监控系
《中国印刷史》英译纪略 2009年10月16日,由美国海马图书公司和浙江古籍出版社联合出版的英译本《中国印刷史》,在德国法兰克福国际书展中国主宾国活动中向全球首发。值此顺利完成国家任务之际,掩卷回
光通信系统中SD-FEC软判决纠错编码技术浅析 前向纠错(FEC)技术目前已经被广泛地应用于光通信系统中,达到改善系统的误码率性能、提高系统通信的可靠性、延长光信号的传输距离、降低光发射机发射功率以及降低系统成本的目的。 近年来,ITU-T针对光