O 引言
永磁直流无刷电机(BLDCM)是一种典型的机电一体化电机,除了有普通直流电机调试性能好、调速范围宽和调速方式简单的特点外,还有功率因素高、转动惯量小、运行效率高等优点,特别是由于它不存在机械换相器与电刷,大大的减少了换相火花,机械磨损和机械噪声,使得它在中小功率范围内得到了更加广泛的应用,是电机的主要发展方向之一。
对于永磁直流无刷电机的控制方式,可以分为两大类:有位置传感器控制方式和无位置传感器控制方式。典型的有位置传感器控制方式是使用霍尔传感器控制方式。无位置传感器控制方式是目前比较广泛使用且较为新颖的一类控制方式,包含有电感器生产:反电动势控制方法、磁链计算法、状态观测器法和人工神经网络(ANN)控制法等。反电动势控制方法中对驱动桥和电机在外电路过流时的保护极为重要,对软件发生错误动作时负载的保护也提出了较高的要求,本文采用反电动势控制方法,以直流无刷稀土电机为研究对象,设计了两个电流保护模块和一个数字逻辑保护电路,提高了系统工作时的安全性,具有较大的研究意义。
1 控制系统总体设计
本系统采用PWM反馈控制方式的典型闭环调速系统其中还创新性的加入了逻辑保护电路和两路电流保护电路,控制系统总体设计框图如图1所示。由转速参考值n0与实际转速的反馈值n相比较,得到的偏差送到转速控制器,经过相应的计算后输出控制信号到PWM控制器,PWM控制器则产生三相桥试逆变器主开关的控扁平型电感制信号,然后由主开关完成对永磁无刷直流电机定子电流的通断,并产生平均意义上旋转的定子电枢合成磁势,由定子电枢合成磁势带动永磁体转子旋转,实现了永磁无刷直流电机的自同步控制。
研究对象永磁直流无刷稀土电机将磁体粘贴到转子铁心表面,组成所谓的隐极式转子结构。其定子三相对称绕组采用整距、集中绕组,无中线引出线,由电机学原理可知反电动势的波形为一梯形波,而且电机中A、B、C三相是对称的,它们的反电动势只在相位上依次落后120度。再考虑到定子每相绕组的反电动势正比于转子角速度,有图2所示关系。
由此得出反电动势法控制规律的重要结论为:通过测量反电动势获取转子位置信号,并不是测量反电动势大小,而是反电动势的过零点信号,当反电动势出现过零点后再延时30度电度角就是转子电流下一次换相时刻。但反电动势无法直接测量得到,可通过测量电机端电压来间接获取电机反电动势。
2 系统硬件设计
该系统硬件电路设计重难点在于驱动逆变电路,转子位置检测电路和电路保护模块三大部分。驱动逆变电路包含驱动芯片和驱动塑封电感器桥式电路两个部分,驱动芯片采用IR2130驱动芯片,它是专用的三相桥式电路驱动芯片,可以直接驱动中小容量的MOSFET、IGBT、MCT等,而且只需一个供电电源,工作频率从几十赫兹到上百千赫兹,内部还设置有过流和欠压保护使得在驱动功率管时更加安全可靠。
驱动桥式电路常用方案有:三相半桥驱动,电容储能驱动和三相全桥驱动。三相全桥驱动由六只功率管构成三相六臂全控桥,虽然增加了功率开关管的数量,但增大了转矩输出且转矩波动小于三相半桥驱动,复杂性与可靠性上也优于电容储能驱动,而且起动特性和低速平稳性都较好,因此本系统采用此插件电感器方案。如图3所示,为驱动芯片和驱动桥式电路(只接了三脚电感一相的上下桥臂)的硬件电路设计。
转子位置检测电路用于测取电机反电动势过零点信息,从而获得转子位置,而且是通过检测电机的端电压来实现的。电路设计如图4所示。
电机端电压检测共分为A、B、C三相,现以A相为例,先将输入到IR2130的B和C相驱动控制信号PWM B和PWM C通过与非门反相,得到B、C两相上桥臂的PWM驱动信号相与的波形,然后跟单片机输出控制口信号Ctr_A相与。当单片机输出控制口为l时,D触发器时钟端为B、C两相PWM驱动波形相与的信号;当单片机输出口为0时,D触发器时钟端为低电平,封锁D触发器输出,使D触发器输出保持不变,从而通过编写软件控制单片机输出口,使得每个状态,只有一个D触发器开通,且在续流阶段封锁D触发器输出,这样可以很大程度的避免反电动势虚假过零点对零点信息测量的影响。
基于51单片机的数字电压表仿真设计摘要:设计采用AT89C51单片机、A/D转换器ADC0808和共阳极数码管为主要硬件,分析了数字电压表Proteus软件仿真电路设计及编程方法。将单片机应用于测量技术中,采用ADC0808将模拟信号
充电疑惑我有一个产品要给平板充电,我用的是明伟开关电源2A/5V,给平板充电时,测了只有500mA,
后来平板换到电脑USB口充电,测得电流还是500MA
我再用平板自带的充电器充电,充电器是1.5A/5V
多核DSP技术在OCT医疗成像中的应用过去几年间,光学相干断层扫描(OCT)技术有长足的进展。自从OCT技术问世以来,眼科医生便运用近红外线技术,拍摄眼部最远端部位的高分辨率影像。由于眼部组织呈现半透明状,因此OCT可提供显现视网膜病变的