两种算法的流程图如图2、图3所示。
差模电感器
3.2 仿真结果
绕行电感器MUSIC算法:
仿真实验中,天线阵列为9元均匀面阵,天线阵元间距是二分之一中心波长,信号点数500点,信号来波方向为[15° 100°,60° 320°]。仿真结果见图4。
零点预处理算法:
实验环境同MUSIC算法,设空间三个信号,其中期望信号来波方向为[100° 30°],干扰信号来波方向为[40° 30°,160° 30°]。仿真结果见图5。
从图4可以看出,在[15° 100°]和[60° 320°]方向上出现了2个尖峰,说明MUSIC算法可以准确地测出空间2个信号的来向。从图5可以看出,零点预处理算法在期望方向形成主波束,在干扰方向形成门限。试验证明,选择这两种算法是正确合理的。
4 DSP模块功能
系统通信的命令格式如图6。
系统工作过程如下:
监控终端微机通过VXI总线给DSP-A发送命令,DSP-A接到命令后,按照内部协议产生校验码,如果与收到的校验码一致,则根据命令号进行相应的测向或波束合成操作。中断1用于DSP和监控终端微机之间的通信,中断0则用于2片DSP之间的通信。DSP-A若接到测向命令,则在DSP-A中取出测向结果;DSP-A若接到波束合成命令,则向DSP-B产生中断0,取出波束合成结果。
本系统采用2片DSP作为无线电测向系统的核心处理器,其中一片在50 ms之内完成测向,另一片在10 ms之内完成波束合成。根据实际需求,测向系统将完成以下功能:
(1)多次测向:由于实际中测向结果存在误差,通常进行多次测向,再取平均,以提高电感器生产精度。测向次数可以由用户自由选择。
功率电感器 (2)自动跟踪:系统设置为自动跟踪态时,先由DSP-A测出信号的角度信息,DSP-B再根据已知的角度信息进行波束合成,使得主波束一直对准期望信号的方向,以此达到跟踪信号的目的。
(3)指定方向:系统设置为指定方向态时,DSP-B波束合成之后将主波束指向用户指定的方向,以便用户观察自己感兴趣方向上的信号动向。
2片DSP的程序流程图如图7、图8所示。
MUSIC和零点预处理算法中大部分都是复数运算,其中复数相乘、复矩阵特征值分解所占比例较大,二维的谱峰搜索耗费较多时间。为此,充分利用了TS201芯片双处理器核的SIMD结构和单周期内可4字读写的特点。在一个周期内同时向X核读入实部,Y核读入虚部,再同时进行乘加运算,双核的使用使程序的运行周期大大减少,约为单核的1/4。对于sin和cos的计算,以0.1°为间隔进行查表运算,比级数展开大大减少了运算时间,精度也达到了系统所需的要求。此外,在TS201的仿真环境VisualDSP++3.5中,还存在Linear profiling工具,可以分析各个子函数占总运行时间的比例,对于把握整个程序的运行状况、优化程序的瓶颈,起了很好的帮助作用。由于TS201有24 Mbit等分为* Mbit存储块的大容量存储空间,它可以充分存储这2个算法所运行的全部数据,不需要进行内存扩展,这也是很多芯片所无法比拟的。综上所述,通过合理的软件结构搭东莞电感器建和一系列的程序优化措施,使DSP的运行时间能够较好地满足系统所需的要求。
5 系统特点
无线电测向系统要求必须以尽可能短的时间、尽可能高的精度对空中信号进行定位和跟踪。本系统充分考虑以上2个因素,具有以下特点:
(1)稳健、高性能的算法。通过大量的仿真实验比较,本文选择了具有高分辨率且性能稳定的MUSIC算法和零点预处理算法。良好的算法保证了系统测向的精度和运行的稳定性。
按需印刷的重要意义按需印刷作为全新的印刷模 式,既是对传统印刷的全面超越, 又是对传统印刷的全面补充,开创 了印刷业的新领域和新境界,同时 对出版业发展产生了深远影响,有 着重要的理论意义和现
[开关电源]buck器件选型,求大神助攻输入参数输入电压:AC220v(正负10%)
频率:50HZ
输出参数输出电压:80~110v,可调
最大输出电流:6A~8A
最大功率:1kw
电容电感怎么选,求大神帮忙,谢谢。
求好心人帮忙
感激不尽,真的急用
DSP与CPLD的智能变电站电网IED设计摘要:着重介绍基于CPLD与DSP架构的智能变电站电网IED(Intelligent Electronic Device,智能电力监测装置)的硬件架构和软件流程。着重阐述了 高速A/D转换器+CPLD