实际上,上述的软件无线电结构是很难实现的。首先,根据奈奎斯特采样定理,A/D的采样速率至少是其工作带宽的2倍。例如:对于工作在2 MHz~2 000 MHz的JTRS电台,其采样频率至少要达到4 GHz。目前A/D器件的采样频率很难达到这个要求,而且,如果A/D采样后的大量数据流直接交由DSP处理,将给DSP带来巨大的运算压力。以A/D采样速率仅为100 MHz的A/D器件为例,DSP每处理1个采样信号,大约需要100次运算,则总的运算速率为100×模压电感器100 M=104 MIPS。这样高的运算速率,目前的DSP芯片还难色环电感以达到。
针对上述问题,目前最常用的一种解决方案为:基于带通采样的宽带中频软件无线电结构。它的主要思想是:把射频信号通过混频搬移到中频再带通采样,使得A/D采样率、输入带宽满足系统要求,同时在DSP前加数字下变频器。
中频带通采样软件无线电结构采用多次混频体制,即超外差体制,把工作频段上的某一感兴趣的宽带射频信号经过放大、混频和滤波变换到统一的中频FIF上,最后由A/D转换器对中频信号进插件电感行采样数字化。它的最大好处就是降低了对A/D采样速率的要求,使软件无线电可实现性更强,但是也使得射频前端复杂化。
限于目前DSP的处理瓶颈,A/D采样后的大量数据一般先交由数字下变频器进行一些前期的处理再传递给DSP进行处理。数字下变频器一方面从包含所有信道的宽带信号中分离出某一用户窄带信道,另一方面对分离出的某一用户通道信号抽取、滤波和降低数据速率。数字下变频器可采用专用的ASIC芯片,如TI公司生产的GC5016芯片等,也可采用FPGA编程来实现。与专用的数字下变频器件相比,FPGA具有更大的灵活性,不会过分依赖于硬件,只需对软件进行修改就可以对系统进行升级和维护。
图2所示为一种典型的带通采样的宽带中频软件无线电结构。该设计方案中DSP主要完成基带信号处理(如定时同步、信道估计、FFT变换、解交织、编译码等)。通用微处理器GPP(General Purpose Processor)一般使用实时操作系统RTOS(Real Time Operation System)来进行任务调度和存储器管理。
2 软塑封电感件无线电的解决方案
本文主要实现图2中的高速数字信号处理部分,数字信号处理模块是软件无线电的核心部分。在图2中的是高速数字信号处理部分的一种常用方案,通常是采用分离部件搭建的系统存在体积大、功耗高、成本高、各个单元之间的数据传输速率受限等缺点。SOPC方案可解决以上问题,并且还具有极高的灵活性和可扩展性。
通过DC/DC转换器稳态建模来教学的方法随着电力电子技术的不断发展及其应用范围的不断拓广,利用全控器件构成的开关变换器得到越来越广泛的应用。为了适应这种变化,各国高校都在电力电子技术的教学中增加了相关的内容[ 1] [ 2]。本文在参考国外
请朋友们帮我看看这个电路,如何实现矩形波转化为此帖出自电源技术论坛
朋友,如何
标题说是“矩形波”,图中标注的是“正弦波”。
你让我相信哪个?另外,各元器件不标注数值。
没有数值,任何“实现”都谈不上。
这个电路可
基于TPS54350型DC/DC变换器供电系统设计1 引言 TPS54350是德州仪器(TI)新推出的一款内置MOSFET的高效DC/DC变换器.采用小型16引脚HISSOP封装.连续输出电流为3A时,输入电压范围为4.5V~20V。该变换器极大地简