图1 模糊控制框图
本文介绍了模糊控制在DC/DC变换器中的两种不同的应用。
3.1 模糊控制在DC/DC变换器反馈控制中的应用
DC/DC变换器的模糊控制框图如图2所示。
图2 DC/DC变换器的模糊控制框图
图中DC/DC变换器用一个黑箱表示,其上有四个端子,分别接输入电压us,输出电压uo,电感电流iL和控制开关S。其中只有输出电大电流电感压和电感电流送入了模糊控制器。
模糊控制规则基于以下几条标准:
1)当变换器的输出远离设置点时,大幅度调整占空比,以使输出快速回到设置点;
2)当变换器的输出接近设置点时,可以稍微调整一下占空比;
3)当变换器的输出在设置点附近并且快速接近它时,应当保持占空比不变,以防止有超调量;
4)当变换器的输出到达了设置点并且仍在变化时,稍微变化占空比以防止输出远离设置点;
5)当输出到达了设置点并保持稳定时,占空比保持不变;
6)当输出超过了设置点,应减小占空比,反之亦然。
通常同样的模糊控制规则可以应用在几种不同类型的DC/DC变换器中,只是一些比例因子要根据变换器的不同拓扑和参数做相应的调整。
文献[1]把模糊控制应用于Cuk变换器的电压反大电流电感馈中,但只利用了输出电压和它的变化率,没有考虑电感电流,虽然与PID控制相比其输出电压波动小于PID控制,并且具有较快的瞬态响应,但是,动态性能还是不够理想。
文献[2]分别把模糊控制应用于Buck-Boost和Sepic变换器中,模糊控制器利用了三个输入变量:输出电压误差εu;电感电流误差εi;电感电流iL。相一体成型电感对于只利用输出电压变量的模糊控制器来说,动态性能更令人满意。同一体成型电感时,通过1明了模糊控制与传统控制方法具有同样快和稳定的小信号响应,并且改进了大信号响应性能。
3.2 模糊控制在主从均流控制的并联DC/DC变换器中的应用
利用主从控制方法并联工作的变换器具有大量的控制环,所以,很难得到系统的实际模型。传统的控制方法是基于简单平均化的线性模型,在负载大范围变化和存在干扰的情况下,则得不到很好的动态响应。模糊控制方法克服了建立复杂模型的困难,因此,可以应用于实际工程中,并且用数字和模拟方法都可以实现。
文献[3]把模糊控制引入到均流环中,可以得到快速且鲁棒性强的瞬态响应。把经过PD控制的均流误差送入模糊控制器,利用PID控制的结果得出模糊推理规则,仿真结果表明负载分别为额定负载的50%和90%时,瞬态响应良好。
4 神经网络控制在DC/DC变换器中的应用
神经网络系统具有输入、输出,它由许多个神经元组成。每个神经元有一个单一的输出,它可以连接到许多其它的神经元,其输入有多个连接通路,每个连接通路对应一个连接权系数。变换权系数将改变整个网络的工作性能,我们的目的就是调整权系数,以获得理想的输入、输出关系。
神经网络控制方法是基于人脑控制行为的生理学研究而发展起来的,是一个具有广阔应用前景的智能控制方法。由于神经网络具有非线性映射能力、自学习适应能力、联想记忆能力,并行信息处理方式及其优良的容错性能,所以差模电感,它在非线性和复杂控制系统中,起着如传递函数在线性系统中所起的作用。
[开关电源]三极管总是烧坏本帖最后由北宸x于2014-10-1811:24编辑 嵌入式超声波测距仪的设计方案引言随着电子技术的发展,测距技术越来越先进,从采用卷尺人工进行丈量,到用水准仪和三角理论进行测量计算,甚至采用激光测距等,这些测量手段因精度低、操作繁琐或成本高而不尽人意。随着超声波的应用日益广泛,超 谁来给推荐一个高精度DCDC电源今天碰到一个产品,碰到难题了。
file:///C:\Users\Thinkpad\AppData\Roaming\Tencent\Users\970839038\QQ\WinTemp\RichOle\9Q{1_@97I2N]__1_H]ST3II.jp
产品要求使用一颗高亮度LED,LED亮度可调,最高工作电流在600mA左右,经过测试,当电流有0.1mA的浮动时,会产生光的波动,从而导致测量数据有偏差,所以,希