3 双极性电流控制器的原理和设计
如图3所示,由隔离放大器的电流控制信号Vc经R1.,同来自外加的差动电流放大器A1B的电流反馈信号经R3相加,经UC3638内部的误差放大器进行电流PT凋节(R2,C1,C2构成补偿网络),再经内部PWM比较器等形成PWM控制信号Aoutl.Aout2,B0utl,Bout2,经VQ1~VQ8形成驱动信号AoutL,Aors 电感器utH,BoutL,BoutH,驱动图4中VT1~VT2成的全桥,输出PWM功率信号,再经L1,L2,C11.C12滤波得到双极性电流(电压)对TEC(图4中RTEC)供电。桥路电流信号由电阻RS1,RS2(实际为多个低阻值电阻并联)检测,经A1A,A1B构成的反相放大器放大再送至图3中的A1B构成平均电流反馈。
3.l UC3638外围电路设计
1)如图3及图5所示,假设UC3638供电电源为±12V,三角波发生器振幅为10Vp-p,按UC3638的设计要求,脚PVSET的电平按如下设置:VPK一VVLY=5VIPVSET,VIPVSET=VR6=10/5=2 V,取R6为10 kΩ,IR5=IR6=2/(10×lO3)=O.2 mA, R5=(VAREF一VR6)/IR6=(5-2)/(O.2×lO-3)=15 kΩ。R5取信以实际调试为准。
2)如果取1V死区电压,5-VDB=1V,VDB=4V,取R12为10 kΩ,IR1=IR12=VDB/R12=4/R12=4/10×103=O.4mA.R11=(5-VDV)/IR11=1/(O.4×10-3)=2.5 kΩ。R11取值以实际调试为准。并联C6在R12上可获得软启动特性(即上电后死区由大逐渐减小)。
3)取VCC一VSD=8V(小于2.5 V进入软启动状态),R14=10 kΩ,IR14=IR15=8/10×l0-3=O 8 mA,R15=(2×VCC-VR14)/H15=(24-8)/(O.8×10-3)=20 kΩ。为现可获得芯片延迟使能特性:在R14上并联电容C8.
4)取频率发生器外接电容C4为1000 pF,由于f/=l/(5×RT×CT),取f=35 kHz,R13=RT=1/(5×f×GT)=1/(5×35kHz×1000 pF)≈5.8kΩ。取R13为6.2 kΩ。当RT=6.2 kΩl时,脚RT的充电电流限制为2.4 V/6.2 kΩ=O 387 mA。小于规定的最大1mA限制。
5)验算死区时间tDB=VDB/[(VPK-VVLY)×=(5-VDB)×RT×CT/VPVSET=1×6.8 kΩ×1000 pF/2V=3.4μs。可见死区时间远大于MOSFET的开关时间,实际应用中可根据输出波形调整R11。
3.2 电流检测电路设计
在实际应用中,由于需要对多个TEC模块串并联使用以提高加热制冷功率,所以驱动输出电压电流较大(最大设计值±24V/20A,实测±25V/17.5A)。为提高效率以减小发热,我们采用多个低阻值电阻并联作为电流检测取样电阻。这样,原有UC3电感生产638内部的电流检测差分放大器放大倍数不够,须外加放大器。但实验发现,PWM驱动器工作时,由于电路高速开关切换产牛很大的dv/di和di/dt,由此产生共模尖峰电压,从而引起很大的地线干扰。在采取了减小干扰的各种措施后,因控制器内部的电流限制阈值较低(±2.5V),很容易引起驱动电路自锁无输出。于是,我们根据其内部电路通过外加运放(图3中A1B和图4中A1A及A1B)的方式实现高倍率的差分电流放大和电平移位(将CS+和CS一短路接地以屏蔽内部差分放大器),并将最后的差分电流放大输出通过图3中电阻R4接至CSOUT共模电感电感厂家以实现最大电流限制功能。同时在信号通路上加上小电容以滤除高频干扰。另外,在MOSFFT栅源极间加电容以减小电路开关切换和密勒电容对栅极驱动信号的不利影响,该措施和死区形成电路一起使驱动器可靠工作,不会发生上下管直通现象,并有效地提高了控制电路的稳定性。
3.3 驱动和全桥电路
采用NPN和PNP互补开关管对PWM输出控制信号进行放大和电平移位。采用P沟道管IRFl4905作为上管,N沟道管IRF3205作为下管构成全桥电路。值得注意的是,当要求占空比最大值达到l时,不能使用普通的泵电路(常用于驱动N沟道上管)对上管驱动。
3.4 输出LC滤波电路设计
DC-DC电源模块选型DC/DC模块电源以其体积小巧、性能卓异、使用方便的显着特点,在通信、网络、工控、铁路、军事等领域日益得到广泛的应用。怎样正确合理地选用DC/DC模块电源呢,笔者将从DC/DC模块电源开发设计的角度,
应用数字化印刷工作流程实现印刷产品的高品质印刷高品质需求是中国印刷产业全球化拓展的基础,应用数字化印刷工作流程实现印刷产品的高品质,必须认识到:预先规划是前提,数字印前技术是龙头,先进印刷设备是基础,精细印后加工是
功率更大、尺寸更小和温度更低的负载点 DC/DC 每一代高端处理器、FPGA 和 ASIC 都因更重的负载而增加了电源的负担,但是系统设计师很少为了符合这种功率增大的情况而额外分配宝贵的系统电路板空间。由于广泛需要更多专用和安装在电路板上的电源,以向