△It=(US-Uo)DTS/(2L)
=(Us+Uo)9(l—D)Ts/(2L) (1)
因为Uo=(2D一1)Us,
所以△IL=D(1一D)TsUs/L。
当D=0.5时△IL有最大值△ILMAX=Us/(4fsL)。可选择L使纹波电流△IL,,不大于LOMAX的(10~20)%。由于TEC所能达到的温差随纹波电流的增大会减模压电感小,其近似的降额公式为
dθ/dθMAX=1/(1+N2) (2)
式中:dθ是TEC在电流有纹电感器的检测波下所能达到的温差;
dθMAX是TEC在直流电流下所能达到的最大温差;
N是电流纹波系数,通常制造商要求电流纹波系数不得大于10%。
由于TEC纹波电流的推导较复杂,这里仪给出文献里的一个估算公式供参考。
式中:fs为振荡器的频率也等于PWM电压的开关频率;
L=L1=L2为滤波器的电感量;
C=C1=C2为滤波器的电容量;
RTECTEC的等效电阻;
VTEC为TEC的直流压降;
ESR为滤波电容的等效串联电阻;
VS为全桥供电电源电压。
式(3)表明在滤波电感、供电电压、模块等确定的情况下,提高开关频率、增加滤波电容容量,减小滤波电容的等效串联电阻可减小电流纹波。当然需要权衡由此增加的电路板面积、功耗等因素来最终确定L、C、fs的值。
4 实验结果
分别对直接电流控制方式(PID由89C52完成)和温度给定控制方式(PID由模拟电路完成)进行了实验,发现直接电流控制方式,数字控制算法较难设计,控制效果并不比模拟PID控制方式好(仅达到±O.3℃)。仅采用适当增益的比例调节器(有差控制),并适当对高频增益进行衰减,用89C52给定温度不做任何调节(即数字控制器开环),短期温度稳定度可达±O.15℃左右,但数字给定温度开环控制模拟调节存在温度可能不在设定点上(一方面是相对于上位PC机给定温度,初始D/A给定值不是很准确,另一方面模拟电路存在漂移),长期稳定度不好,为此我们利用89C52进行数字目标控制,其目的是,即使初始D/A数字给定值不是很准确,差1℃~2℃,通过程序判断,自动调整89C52送到D/A的数字量,使最终控制温度达到上位PC机的温度给定值,实验发现,在算功率电感器法合理的情况下,甚至能提高温度稳定度。采取以上措施,温度稳定度小于±O.15℃(若改进算法应还有提高的可能,实验中已观察到这一点,若温度控制范围不大更是如此),温度偏移量(温度准确度)小于大功率电感7;O.5℃。图8及图9,表1及表2是实验结果。
5 结语
设计了共模电感输出±24V/20A(实测±25V/17.5A)双极性电流驱动器,对仪器中由TEC构成的加热制冷模块进行控制,并采用89C52进行PID温度控制,最大加热制冷速度>l℃/s,温度稳定度<±O.15℃,温度偏移量<±O.5℃,温度控制范围为45℃~100℃。实践证明采用UC3638构成双极性电流驱动控制器用于TEC温度控制是可行的。
DC-DC电源模块选型DC/DC模块电源以其体积小巧、性能卓异、使用方便的显着特点,在通信、网络、工控、铁路、军事等领域日益得到广泛的应用。怎样正确合理地选用DC/DC模块电源呢,笔者将从DC/DC模块电源开发设计的角度,
应用数字化印刷工作流程实现印刷产品的高品质印刷高品质需求是中国印刷产业全球化拓展的基础,应用数字化印刷工作流程实现印刷产品的高品质,必须认识到:预先规划是前提,数字印前技术是龙头,先进印刷设备是基础,精细印后加工是
功率更大、尺寸更小和温度更低的负载点 DC/DC 每一代高端处理器、FPGA 和 ASIC 都因更重的负载而增加了电源的负担,但是系统设计师很少为了符合这种功率增大的情况而额外分配宝贵的系统电路板空间。由于广泛需要更多专用和安装在电路板上的电源,以向