1 STS—SVM在级联型多电平变流器中的实现
级联型多电平变功率电感器流器[3]采用若干个低压PWM变流单元直接级联方式实现高压输出。由m个变流器单元级联而成的多电平变流器的电平数为(2m+1)。
级联型多电平变流器具有下述特点:
1)使用的元器件最少,容易实现电平数较高的输出;
2)每个变流器单元的结构相同,便于模块化设计和封装;
3)因为各变流器单元之间相对独立,所以可以较容易地引入软开关控制;
4)直流侧的均压比较容易实现;
5)各变流器单元共模电感器的工作负荷一致。
STS—SVM技术是SVM技术与多重化、多电平技术的有机结合。它既可以应用于组合变流器中,也可以应用在级联型多电平变流器中。它同时具备了SVM技术和组合相移SPWM技术的优越性。其调制原理简言之就是将各变流器单元的采样时间错开。
对于如图1所示的N级三相级联型多电平变流器,对每个变流器单元的左右桥臂分别进行相同幅度调制比,频率调制比下的SVM控制,并使左右桥臂的采样时间相互错开△t,△t=T/2 (1)
式中:T为开关周期。
这就是桥内STS—SVM的控制方法。
变流器各单元之间则采用桥间STS—SVM控制,相邻两个变流器单元同侧桥臂的采样时间相互错开△t桥间
△t桥间=Ts/2N (2)
采用这种控制方法,当幅度调制比M,足够高时,每个变流器单元的电压输出为三电平。N级三相级联多电平变流器的相电压输出为2N+1电平。
由此可见,采用差模电感STS—SVM技术后,实际输出的电压波形相当于所有桥臂调制信号的代数和。因此,N级级联型多电平STS—SVM变流器的等效开关频率提高了2N倍,亦即实际的采样点数目提高了2N倍,与常规SVM技术相比各提高了N倍,从而使电压空间矢量的轨迹更接近于圆形,降低了输出谐波,改善了输出波形。大功率电感贴片电感器
需要注意,该结论的前提是有足够高的幅度凋制比Mr,因而确切地说,N级三相级联多电平变流器的相电压输出最高为2N+1电平。当Mr小于某临界值时,由于各桥臂的输出脉冲都比较窄,有可能相互错开而无法叠加出应有的电平数。以单级多电平变流器为例,当Mr>0.5时,相电压为三电平,线电压为五电平;当Mr<0 5时,相电压为二电平而线电压为三电平。
幅度调制比Mr与输出电压电平数的具体关系限于篇幅不再赘述。
2 STS—SVM与其他调制方式在三相级联型多电平变流器中的技术特点比较
在级联型多电平变流器上除了采临安电感厂用STS—SVM控制方式外,常用的调制方法还有:
1)基于定次谐波消除技术(SHE)的阶梯波脉宽调制;
2)载波相移SPWM;
3)多电平SVM技术。
与基于SHE的阶梯波脉宽调制技术相比,STS—SVM技术消除和抑制谐波的能力不受输出电平数的限制,能够方便地实现实时控制,可以应用在对系统有快速反应要求的场合中。
该如何看待SOCAY硕凯电子2016慕尼黑上海电子展 慕尼黑上海电子展已经闭幕几天了,在硕凯电子官网页面依然陆续有参展客户的咨询,有咨询方案的也不乏有直接问产品交期的,总而言之一句话,本届慕尼黑上海电子展还是比较成功的,至
EMI及无Y电容手机充电器的设计在开关电源中,功率器件高频导通/关断的操作导致的电流和电压的快速变化而产生较高的电压及电流尖峰是产生EMI的主要原因。加缓冲吸收电路有利于降低EMI,但会产生过多的功耗,增加元件数量、PCB尺寸及系统
UV干燥U V干燥是指承印物上的紫外线 油墨或亮光油墨通过紫外线照射后 能迅速聚合固化的干燥方式。这 种干燥方式具有固化速度快、印 品质量好等特点,所以在胶印、 柔印和丝网印刷中