0 引言
Boost是一种升压电路,这种电路的优点是可以使输入电流连续,并且在整个输入电压的正弦周期都可以调制,因此可获得很高的功率因数;该电路的电感电流即为输入电流,因而容易调节;同时开关管门极驱动信号地与输出共地,故驱动简单;此外,由于输入电流连续,开关管的电流峰值较小,因此,对输入电压变化适应性强。
储能电感在Boost电路起着关键的作用。一般而言,其感量较大,匝数较多,阻抗较大,容易引起电感饱和,发热量增加,严重威胁产品的性能和寿命。因此,对于储能电感的设计,是Boost电路的重点和难点之一。本文基于ST公司的L6562设计了一种Boost电路,并详细分析了磁性元器件的设计方法。
1 Boost电路的基本原理
Boost电路拓扑如图1所示。图中,当开关管T导通时,电流,IL流过电感线圈L,在电感线圈未饱和前,电流线性增加,电能以磁能的形式储存在电感线圈中,此时,电容Cout放电为负载提供能量;而当开关管T关断时,由于线圈中的磁能将改变线圈L两端的电压VL卡及性,以保持其电流IL不突变。这样,线圈L转化的电压VL与电源Vin串联,并以高于输出的电压向电容和负载供电,如图2所示是其电压和电流的关系图。图中,Vcont为功率开关MOSFET的控制信号,VI为MOFET两端的电压,ID为流过二极管D的电流。以电流,IL作为区分,Boost电路的工作模式可分为连续模式、断续模式和临界模式三种。
分析图2,可得: |
利用Boost电路实现高功率因数的原理是使输入电流跟随输入电压,并获得期望的输出电压。一体成型电感器因此,控制电路所需的参量包括即时输入电压、输入电流及输出电压。乘法器连接输入电流控制部分和输出电压控制部分,输出正弦信号。当输出电压偏离期望值,如输出电压跌落时,电压控制环节的输出电压增加,使乘法器的输出也相应增加,从而使输入电流有效值也相应增加,以提供足够的能量。在此类控制模型中,输入电流的有效值由输出电压控制环节实现调制,而输入电流控制环节使输入电流保持正弦规律变化,从而跟踪输入电压。本文在基于此类控制模型下,采用ST公司的L6562作为控制芯片,给出了Boost-APFC电路的设计方法。 基于ATmega48的微功耗电刺激器的设计运动障碍性疾病源于不同神经递质之间的失衡,而不同部位神经细胞的变形坏死是导致神经递质失衡的神经生物学基础。既往对运动性疾病的治疗主要通过药物治疗或苍白球手术破坏两种方法。第一种治疗途径或者是疗效差,或 基于ADE7878芯片的谐波电能表的设计方案1.引言随着中国的社会用电量迅速增长,全国特高压电网建设,百万千瓦级发电机并网,家居网络化进程,以及电网经营管理改进和计量新技术应用等要素,电能表市场发展迅猛,中国目前已成为世界电能计量行业最具有活力 基于DSP/BIOS 的TI DSP 应用程序框架设计 摘要:本文介绍了基于DSP/BIOS 实时内核的TI DSP 应用程序参考框架RF5。另外,面对目前越来越多的多处理器系统设计以及典型的GPP-DSP 架构,本文提出了一种改进的DSP应用程序框架E
|