本文详细分析计算开关损耗,并论述实际状态下功率MOSFET的开通过程和自然零电压关断的过程,从而电感器的作用使电子工程师知道哪个参数起主导作用并更加深入理解MOSFET。
MOSFET开关损耗
1 开通过程中MOSFET开关损耗
功率MOSFET的栅极电荷特性如图1所示。值得注意的是:下面的开通过程对应着BUCK变换器上管的开通状态,对于下管是0电压开通,因此开关损耗很小,模压电感可以忽略不计。
图1 MOSFET开关过程中栅极电荷特性
开通过程中,从t0时刻起,栅源极间电容开始充电,栅电压开始上升,栅极电压为
其中:,VGS为PWM栅极驱动器的输出电压,Ron为PWM栅极驱动器内部串联导通电阻,Ciss为MOSFET输入电容,Rg为MOSFET的栅极电阻。
VGS电压从0增加到开启阈值电压VTH前,漏极没有电流流过,时间t1为
VGS电压从VTH增加到米勒平台电压VGP的时间t2为
VGS处于米勒平台的时间t3为
t3也可以用下面公式计算:
注意到了米勒平台后,漏极电流达到系统最大电流ID,就保持在电路决定的恒定最大值ID,漏极电压开始下降,MOSFET固有的转移特性使栅极电压和漏极电流保持比例的关系,漏极电流恒定,因此栅极电压也保持恒定,这样栅极电压不变,栅源极间的电容不再流过电流,驱动的电流全部流过米勒电容。过了米勒平台后,MOSFET完全导通,栅极电压和漏极电流不再受转移特性的约束,就继续地增大,直到等于驱动电路的电源的电压。
MOSFET开通损耗主要发生在t2和t3时间段。下面以一个具体的实例计算。输入电压12V,输出电压3.3V/6A,开关频率350kHz,PWM栅极驱动器电压为5V,导通电阻1.5Ω,关断的下拉电阻为0.5Ω,所用的MOSFET为AO4468,具体参数为Ciss=955pF,Coss=145pF,Crss=112pF,Rg=0.5Ω;当VGS=4.5V,Qg=9nC;当VGS=10V,Qg=17nC,Qgd=4.7nC,Qgs=3.4nC;当VGS=5V且ID=11.6A,跨导gFS=19S;当VDS=VGS且ID=250μA,VTH=2V;当VGS=4.5V且ID=10A,RDS(ON)=17.4mΩ。
开通时米勒平台电压VGP:
计算可以得到电感L=4.7μH.,满载时电感的峰峰电流为1.454A,电感的谷点电流为5.273A,峰值电流为6.727A,所以,开通时米勒平台电压VGP=2+5.273/19=2.278V,可以计算得到:
开通过程中产生开关损耗为
开通过程中,Crss和米勒平台时间t3成正比,计算可以得出米勒平台所占开通损耗比例为84%,因此米勒电容Crss及所对应的Qgd在MOSFET的开关损耗中起主导作用。Ciss=Crss+Cgs,Ciss所对应电荷为Qg。对于两个不同的MOSFET,两个不同的开关管,即使A管电感生产电感器生产的Qg和Ci一体成型电感器ss小于B管的,但如果A管的Crss比B管的大得多时,A管的开关损耗就有可能大于B管。因此在实际选取MOSFET时,需要优先考虑米勒电容Crss的值。
减小驱动电阻可以同时降低t3和t2,从而降低开关损耗,但是过高的开关速度会引起EMI的问题。提高栅驱动电压也可以降低t3时间。降低米勒电压,也就是降低阈值开启电压,提高跨导,也可以降低t3时间从而降低开关损耗。但过低的阈值开启会使MOSFET容易受到干扰误导通,增大跨导将增加工艺复杂程度和成本。
2 关断过程中MOSFET开关损耗
关断的过程如图1所示,分析和上面的过程相同,需注意的就是此时要用PWM驱动器内部的下拉电阻0.5Ω和Rg串联计算,同时电流要用最大电流即峰值电流6.727A来计算关断的米勒平台电压及相关的时间值:VGP=2+6.727/19=2.354V。
NS汽车照明解决方案1.采用 LM3423升降压LED 驱动器的车头灯解决方案这款电路利用 12V及24V 总线的电池供电驱动一组共 6 个串联一起的 3W LED,适用于汽车的车头灯。由于 LED 灯组的总正向电压可能
使用斩波型OP放大器的低漂移热电偶前置放大器电路的功能广泛用于温度检测的热电仙电动势很小,大约只有10UV/度左右,要进行高精度测量,必需把失调漂移控制在1UV/度以下,作为差动放大式的OP放大器,可用的产品不多。而失调漂移在正负0.05UV以
谈烟包印刷生产方式烟包印刷业在我国印刷包装业中占有重要的地位, 烟包印刷业依靠近年来我国烟草业的高速发展而快速发展。烟包印刷企业拥有世界一流的印刷设备和印后加工设备, 先进的生产技术造