第2级--取指令。根据转移预测规则计算出下一条被取指令的指针。对于零机器周期转移,转移合并单元先预处理,并将检测到的转移与正在执行的指令结合起来。预取出的指令存在FIFO缓存器中,同时,下一条要执行的指令输出FIFO缓存器,进入执行流水线。
第3级--译码。指令被译码,如需要,在间接寻址模式中,寄存器文件将被访问,以读取通用寄存器GPR。
第4级--寻址。计算所有操作数地址,对于所有隐含访问系统堆栈的指令,堆栈指针递减或增加。
第5级--存储。所有需要的操作数被取出。
第6级--执行。使用已取出的操作数进行MAC单元操作。对于非MAC单元指令,在这一级中,指令将由算术逻辑单元(ALU)执行。条件标志被更新,执行所有直接对CPU特殊功能寄存器CPU_SFRs进行写操作的指令,在间接寻址时,作为地址指针的GPRs自动递减或增加。
第7级--写回。所有外部操作数以及剩余的,在内部DPRAM空间内的操作器被写回。定位在内部SRAM中的操作数进入写回缓冲区。
下面给出一个具体例子:
上面程序的指令流水线如表1所列,(Tn表示机器周期)
2.2 数据相关性排除
在XC166的CPU中,由于指令流水线的设计要求,在使用通用寄存器(GPRs)的指令之间存在一些数据相互依赖的情况,尽管XC166单片机已经使用了专用硬件来检测及解决数据相关性,但仍然有一些不可避免的数据相关性。在编程时,可以充分利用模压电感数据相关性来达到程序优化的目的,比如,在用GPR作为间接寻址指针时,如果PGR中的地址值被改变,间接寻址操作必须等待2个机器指令周期后,才能使用GPR作为地址指针寻址。在这种情况下,可以在这2个等待机器周期内插入2条其他单机器周期指令,充分利用这2个周期的等待时间以便程序更优化。
下面举一个例子:
另外一种数据相关性发生在间接寻址访问内存时,XC166单片机中的地址产生单元使用推测原理,在地址译码前,数据的读取路经将根据历史记录表中选出;在历史记录表中,每个GPR都有一个入口。这些入口记录了用相应GPR所访问的内存空间情况。如果这种预测发生错误,读取操作必须重新开始。
因此,如果用GPR作为间接寻址,GPR最好能指向相临安电感厂同内存空间。如果更新后的GPR指向不同内存空间,下一个操作将出现访问错误,一体电感读操作必须重复,这就产生了指令流水线电感厂家堵塞。例如:
2.3 内存带宽冲突排除
如果在流水线上的指令在同一时间访问同一内存,就会发生内存带宽冲突,MAC单元的CoXXX指令是特别为实现DSP设计的。为了避免在DPRAM中发生带宽冲突,CoXXX指令的其中一个操作数必须放在SRAM中,以保证在单个机器周期内执行MAC单元指令。例如:
2.4 指令重排
在用MAC单元指令编程时,经常要改变MAC单元的特殊功能寄存器,比如IDX0,IDX1、QX0、QX1、QR0以及QR1等,在XC166单片机中,有一些指令将会阻塞在译码阶段,如果这些指令正好在一条修改特殊功能寄存器(SFR)指令之后执行,这种阻塞将引起3个机器周期的延时。
这些指令包括:
◇使用长地址模式的指令;
◇使用间接寻址的指令,除JMPS和CALLI外;
◇所有MAC单元指令(CoXXX指令)。
为了避免指令阻塞,在使用上述指令时,如有阻塞情况发生,应该重新重排指令,以消除延时,例如:
电源管理发展问题分析过去十年间,电源管理技术发生了巨大的变化。电子产品的便携化、个性化浪潮改变了消费电子市场的版图,进而改写了电源设计、集成特性和效率方面的规则,并将智能电源管理和系统知识推到了产品设计的最前线。飞速发展
电源浪涌保护器的参数选择及线路保护浪涌保护器(Su rge p ro tect ive device, SPD) , 也称电涌保护器、避雷器等, 它的作用是保证电子设备免受浪涌过电压(雷电过电压、操作过电压等) 的破坏, 既不影响设备
TMS320F2812的SPI接口设计摘要:为了使控制系统的参数能够在掉电之前保存下来,提出一种SPI模块与25LC040芯片的接口设计方法,介绍了DSP芯片TMS320F2812 SPI模块的特点,以及25LC040芯片的功能特点、操作