这种方法已经被成功用于生成电感器有什么用堆叠芯片的模型生成[10]。这种封装中通常会有多条热流路径,当附加在封装表面的边界条件不同时,则不能把生成的阶梯型RC 模型认为是独立于边界条件的模型。
对于LED 来说,封装内部仅有一条热流路径,则阶梯型RC 模型可以作为描述LED 封装热性能的一种非常合适的模型。
下图所示为LED 在不同的实际散热环境下测得的结构函数图形,从图中可以看出,LED 的热模型是独立于边界条件的,改变测试环境(在我们的例子中:插入了塑料薄层材料)并不会影响描述封装内部详细散热性能的那部分结构函数。文献[11]中同样提到,改变一级LED 的热沉的表面接触特性并不会对热流路径上位于其之前的部分产生影响。因此,图3 所示的、在热流进入MCPCB 之前的一段热流路径的阶梯状模型,是适合于当我们做类似于图2 所示的二级LED 或者类似于图8 所示的LED 组件的板级热分析时,用来模拟单个LED 封装的散热热性的。文献[11]中还提到了封装级LED 的更详细的建模方法。
2.2 LED 的热-光协同测试
半导体器件的热瞬态测试基于的是电学的测试方法[12]。常规元器件的热阻(或者瞬态时的热阻特性曲线)可以用测得的元器件温升和输入的电能来计算得到。但是对于大功率LED 来说,这个方法并不适合,这是因为输入总电能的10~40%会转变为有效的可见光输出。也正是因为这样,我们在利用直接测试的方法去建立LED 封装的热模型时都需要把有效的可见光输出的能量去掉。为此,我们设计了一套如图5 所示的测试系统,用它可以实现LED 封装的热-光协同测试。
图5:连接到T3Ster 热瞬态测试仪的一套光测量系统(LED 安装于一个热电制冷片上)
图6:不同偏压电流下1W 红光LED 的发光量随壳温(实线)以及结温(虚线)的变化曲线
被测元件固定于一个热电制冷片上,而热电制冷片安装在一个满足CIE[13]规范和推荐设置的积分球中。在进行光测量时,热电制冷片可保证LED 的温度稳定,一体成型电感器而在进行热测试时,它就是LED 的散热冷板。在热和电的条件都不变的前提下对LED 或LED 组件进行光测试,我们可以得到在特定情况下的LED 发光功率(如图6 所示)。
当所有的光测量完成后,我们将被测LED 关掉,并用MicReD 公司的T3Ster 仪器对其进行瞬态冷却过程测量。在用T3Ster 进共模电感行测量时,我们使用与测试二极管时相同的测试仪器设置。热瞬态测试可以给出热阻值,所以元器件的结温可以通过热电制冷片的温度反推计算出来。
根据瞬态冷却曲线,并同时考虑元件的有效光能输出,我们电感器厂家可以计算出被测元件的热阻特性曲线。而热阻特性曲线又可以被转换成结构函数曲线,从结构函数中即可用前面讨论的方法得到LED 封装的CTM 模型。
3. 板级电-热仿真
3.1 用同步迭代法进行电-热封闭仿真的原理
我们用同步迭代法[14][15]进行处在电路中的半导体元件的电-热仿真。
对于安装于基板上的有源半导体器件来说(如大型芯片上的晶体管或者MCPCB 上的LED),其热简化模型的边界条件独立性十分重要,这就要求其基板与元件自身的接触面以及基板与散热环境之间的关系这两个条件应该尽量接近实际应用情况。基于边界条件的基板模型可根据实际应用环境来确定。然后,包含元件和基板的热阻网络就可以和电路一起用同步迭代法进行协同求解了。我们用半导体元件的电-热模型把电、热两种网络协同起来:每个元件都用一个热节点来代替(如图7)。
元器件的发热量通过热节点来驱动整个热网络模型。元件的电参数与其温度有关,可根据插件电感器热网络模型的计算结果推算出来。利用电压与电阻之间的关系以及温差与热阻之间的关系,电和热的网络可进行联立迭代求解,并可以给出一组封闭解[16][17]。
TMS320C6000系列DSP的Flash启动设计摘要 对TMS320C6000系列DSP的几种启动加载方案中的EMIF加我方式进行较详细的分析。然后以TMS320C6713 DSP为例,提出一种在主程序中直接烧写Flash的办法,并与常用的Flas
基于LTM4618设计的带跟踪的6A DC电源稳压技术LTM4618是带跟踪和频率同步的6A DC/DC Module电源稳压解器,包括了开关控制器,功率FET,电感和所有支持的元件。输入电压4.5V - 26.5V,输出电压0.8V - 5V由单个外接
全液晶显示车载交互式信息系统方案1 引言汽车仪表是驾驶员与汽车进行信息交流的重要接口,为驾驶员提供汽车运行参数、故障等信息,使驾驶员可以方便、全面地掌握汽车运行状态,有利于提高驾驶的舒适性和安全性。随着汽车工业的蓬勃发展,汽车的附属