2.1.2 TMS320F2812的复位电路
TMS320F2812的复位电路采用上电复位电路,由电源器件给出复位信号。一旦电源上电,系统便处于复位状态,当XRS为低电平时,DSP复位。为使DSP初始化正确,应保证XRS为低电平并至少保持3个CLKOUT周期;上电后,该系统的晶体振荡器一般需要100~200 ms的稳定期。所选的电源器件TPS73HD301一旦加电,其输出电压紧随输入电压。当输出电压达到启动RESET的最小电压(25℃时,为1.5 V)时,引脚RESET输出低电平,并且至少保持200 ms,从而满足复位要求。
2.1.3 TMS320F2812的供电电路
DSP的供电要求为其内核和I/O分别进行供电,现采用电源器件TPS73HD301为DSP供电,内核供电电压为1.9 V,I/O口供电电压为3.3 V。其中,Vdd供1.9 V电压,VDDIO供3.3 V电压,Vss接地。
2.2 供电电路
2.2.1 +3.3 V电源电路
考虑到简化电路和节约成本等因素,选择LDO型的电源芯片。LDO为低压差线性稳压器,与传统的线性稳压器相比,LDO所需输入、输工字电感器出的压差较低,但输出效率较高,发热较少。这里选用AMS1117—3.3。+3.3 V电源电路如图4所示。用前面产生的+5 V电压作为电压输入,输出的固定电压为+3.3 V。该电源系统的输入、输出均需要加电容进行滤波,以便提供质量较好的+3.3 V电源电压。
2.2.2 +5 V电源
+5 V电源选型时应考虑器件的带负载能力,也就是能提供的功率。根据估算,系统中要求+5 V电源输出电流在1~2 A左右,由输入+15 V降至+5 V,故选用电源管理中的DC—DC芯片。这种芯片的最大优点是输出电流强劲,输出功率大,输入、输出压差变化范围广,效率较高。LM2596—5是一款高效率的DC—DC电源管理芯片,开关频率高达150 kHz,输出最大电流达3 A,能够满足检测系统的要求。但是应该注意的是,此电源芯片输出的电源纹波较大,在应用中需对输出电压进行LC滤波处理。+5 V电源电路如图5所示。
2.3 无线通信模块与DSP的连接电路
本系统采用的是北京顺舟科技SZ05系列嵌入式无线通信模块。其集成了符合ZigBee协议标准的射频收发器和微处理器,具有通信距离远、抗干扰能力强、组网灵活、性能可靠稳定等优点;可实现点对点、一点对多点、多点对多点之间的设备间数据的透明传输;可组成星型、树型和蜂窝型网状网络结构。
SZ05系列无线通信模块数据接口包括TTL电平收发接口、标准串口RS232数据接口,可以实现数据的广播方式发送、按照目标地址发送模式,除可实现一般的点对点数据通信功能外,还可实现多点之间的数据通信。SZ05系列无线通信模块分为中心协调器、路由器和终端节点。这3类设备具备不同的网络功能:中心协调器是网络的中心节点,负责网络的发起组织、网络维护和管理;路由器负责数据的路由中继转发;终端节点只进行本节点数据的发送和接收。无线通信模块传输距离为1000~2000 m,串口速率范围为1 200~115 200bps,频率范围为2.405~2工字电感.480GHz,供电压为+5V。
电源电路提供给无线通信模块+5 V电压,SZ05ZBEE无线通信模块提供标准RS232和TTL收发两种接口标准。RS232串口为TX、RX、GND三线工作模式;TTL为TX2、RX2两线工作模式,TTL电平为3.3 V。这里选用RS232串口。无线通信模块与TMS320F2812的接口电路如图6所示。无线通信模块的RX、TX绕行电感器端口与TMS320F2812的串口相连。4个输出端口用来接指示灯,分别为DATA串口数据收发指示灯、RUN系统运行指示灯、NET网络指示灯、ALARM系统告警指示灯,这4个端口都外接指示灯以便用户观察系统运行情况。CENTER为中心节点端口,若此端口接低电平,则此无线模块具有中心节点功能。DEVICE为终端节点端口,若此端口接低电平,则此无线模块具有终端节点的功能(也就是点对点的传输),无中心节点的功能。CONFIG为配置接口,其接电感器的符号低电平为配置无线通信模块状态,在这个状态下可以配置无线通信模块的参数。这3一体成型电感器个端口在硬件电路设计中均留有跳帽以便功能的选择。
薄膜电容器模组在感应加热中的应用1、引言:感应加热技术,早期应用在家用电磁炉上.后来随着高效,节能及环保的优点越来越显著,加上产品技术成熟及使用稳定,感应加热技术逐渐开始往工业领域发展.从早期的单相2KW,到现在的三相100KW及以
HC-MF73K-D5三菱伺服金牌代理,三菱总代理
三菱伺服维修中心
021-61994515吴先生021-6048-6253021-6044-
4662021-6199-4515021-6048-8026021-6052-9741
021-3701-05791531-6378-289153-0
Buck变换器参数辨识的分析构建了Buck变换器参数辨识的方法。通过检测电感电流和输出电压的波形信号,可辨识出电路的滤波电感、滤波电容及其等效串联电阻,并可应用于参数在线辨识,故障趋势判断和预知维护。最后通过实验验证了这一方法的