随着处理器核心电压与ASIC 核心电压轮番持续下降,只有彻底理解了需求和可选方案,才能选出能提供这些所需低电压的最佳设计。一般来说,在可能的情况下,我们大多数人都更愿意用线性稳压器,而不是开关稳压器。因为线性稳压器,或 LDO(low dropout,低压降)稳压器,一般实现起来比较简单,成本低,体积小。但是,线性稳压器从 VIN 到 VOUT 电压降产生的功率损失会降低电源效率,并且发热高,所以,线性稳压器经常被排除在可选范围之外。而且,当 VOUT伴随着微处理器核心电压进一步下降,线性稳压器可能会更难于符合要求。然而,立即抛弃 LDO 稳压器也不明智的,毕竟它还有许多优点。
在对线性稳压器作了评估后,我们还需要遍历所有的开关稳压器可选方案。是应该采用同步方式还是异步方式;用电流模式还是电压模式;脉冲宽度、脉冲频率还是磁滞开关?还需要其它特性吗?如果可选的线性稳压器和开关稳压器实在太多,要找到一个最适合自己产品的方案,就应该把应用需求列出一个详细清单,然后同各种可供选择的方案进行比较。应该记住:选择正确设计的过程包括三个步骤,第一步就是建立有关需求、约束以及所期望特性的完整清单,从而全面理解自己的需要并使其文档化。
这个清单开始于一些基本要素:如输入电压、输出电压以及负载电流。然后尽可能多地添加其它信息。清单中包含的需求、约束和期望特性越多,就更容易缩小可选方案的范围。这一清单可以提示出什么是重要的,并帮助理解及证明自己的最终决定。清单的其它项可能包括:成本、尺寸、电压降(压差VIN-VOUT 的最低值)、最小/最大输入电压、最小/最大可接受负载电压、容错/精度、负载瞬态电流、线路调整率、静态电流、电池类型及寿命、开/关脚、封装/布局/定位的限制、顺序、软起动、环境温度、期望和禁止的开关频率、对部件来源/类型的限制等等。除此以外,是否还有其它因素会影响到最终决策呢?
经过对需求与约束的充分考察并使之文档化后,第塑封电感二个步骤是研究选择线性稳压器的可行性。这一步很有必要,这样可以在研究线性稳压器优劣的同时,快速地缩小可选范围。最重要的一些计算都很简单,通过这些计算可以确定功率损耗、效率以及需要的散热方式:首先,用 IOUT 与 压差VIN-VOUT的乘积计算出功率损耗,然后与 IC 内部电路的功耗相加:PLOSS=[(VIN-VOUT)×IOUT]+PIC,其中,PIC=VIN×IGND(IGND 亦为 ISUPPLY 或 IQ)。
确认采用了最大的 VIN 和最小的 VOUT 来计算最差情况的数值。电源通常指定了最大 VIN,而最小 VOUT 的准确值可以通过数据表得到。接下来计算给负载提供的功率,方法是用输出电压乘以负载电流:POUT=VOUT×IOUT。最后,计算效率:用加到负载上的输出功率除以系统总功率:效率 = POUT/(POUT+PLOSS)。于是就得到了一些关键数据,可以用来筛选线性稳压器。
图1,线性稳压器压差VIN-VOUT(VDIFF)范围内,功率损失与IOUT关系。
电感器厂家 功率损耗有两个后果:发热和低效率。使用线性稳压器的关键在于是否可以发散和耐受产生的热量,以及避免由此所致电池寿命的缩减。另一个关键问题是,是否能通过提高 LDO 稳压器的性能来维持它的候电感符号选资格。图1 显示了在某个VIN-VOUT塑封电感 差(VDIFF)范围内,功率损耗与IOUT的关系。图 2 显示了几种常见封装的功率耗散能力。如图 2 所示,业界标准封装技术可以在不加散热片情况下提供超过 2W 的功耗。可将此数值与上面计算的 PLOSS 相比较。图 3 按图 2 所示顺序和相对大小列出了各种封装形式。
图2,在无散热片情况下,工业标准封装技术可以提供高于 2.0W 的功率耗绕行电感器散。
高频小信号LC 谐振放大器的设计0引言高频小信号放大器是放大中心频率在几百兆赫兹到几百千兆赫兹的高频小信号的放大器。它在通信电子系统中有着重要的用途,通常应用在广播、电视、通信、雷达等无线通信的前段接收机中,其对接收机的灵敏度、抗干
基于达芬奇技术的数字视频系统设计与实现摘要:达芬奇技术是业界第一款集成了DSP 处理器、软件、工具以及技术支持的综合型解决方案系列,非常适用于开发各种优化的数字视频终端设备。本文介绍了一种基于达芬奇技术的数字视频系统设计方案。详细阐述了该
白话数字电源数字电源的概念已经被提出多年,很多公司也已经推出了各种数字电源产品,可以说数字电源算不上是什么新生事物。然而,由于关于数字电源的宏观、中立 性的中文文献并不多,所以数字电源的轮廓依然并不十分清晰。多数
1/4 1 2 3 4 下一页 尾页