先来比较一下开关稳压器的与线性稳压器的效率。图 5 显示了计算出的效率曲线,它们分别是一个同步开关稳压器、一个异步开关稳压器和一个线性稳压器,条件均为 1.2V 输出电压,输出电流范围为 50 mA 至 5A。当输入电压从 3.3V 降至 2.5V 和 1.5V 时,异步开关稳压器和线性稳压器的效率均有较大提高。对线性稳压器,效率大致为 VOUT/VIN,所以当输入电压降为 1.5V 时,效率大约提高 35% 至 80%,接近开关稳压器的效率。异步开关稳压器的效率增加约 10%,因为当输入电压下降时,占空比增加,传输晶体管导通的时间多于二极管,这就需要更高的固定电压降(本例为 0.5V)。应记住这些效率只是理论值。在实际应用中,由于开关稳压器有传输晶体管和电感的压降,从 1.5V 可能得不到 1.2V 电压,此时 LDO 稳压器就更具吸引力了。
现在,注意一下低输出电压条件下开关稳压器的效率,以及两种主要开关稳压器(同步和异步)之间的比较评定。开关稳压器效率较高是因为它们降低了对电源电流的需求。对线性稳压器,传输晶体管总是导通的,多余的能量(VDIFF×IOUT)都以热能形式散发出去。但是,开关稳压器可以把这个多余的能量储存在输出端的电感和电容中。负载可以从这里汲取能量,直至下一个开关周期刷新它们。由于开关稳压器是储存能量而不是浪费掉它们,因此降低了平均输入电流,提高了效率。

图6,异步稳压器使用一个三极管和一个二极管完成能量传送周期。同步稳压器则使用两个三极管。
异步稳压器使用一个三极大功率电感器管和一个二极管来完成能量传输过程(图 6)。在周期的第一部分,三极管将能量从源头送给负载和 LC 滤波器。当三极管截止时,正向偏置的二电感器生产极管使 LC 中储存的能量流向负载,完成周期的剩余部分。由于二极管导通需要较高的正偏电压,所以最好是尽量使传输晶体管导通时间加长,以提高效率。但不幸的是,低输出电压经常会产生短的占空周期。
同步稳压器用另一个三极管替代了异步稳压器中的二极管。这支三极管的电压降低于二极管,于是效率高于异步开关稳压器。但轻载时则是一个例外,因为此时低导通电阻对系统效率提升作用不大,但仍要开关同步 FET 管。图 5 显示了这一效应。当 IOUT 接近 0A 时,同步 FET 的开关损耗明显降低了效率。
一般而言,在需要低占空因数、大输出电流或低输出电压的情况下(如为处理器核心供电的情况),同步稳压器的效率仍然高于异步稳压器。
许多开关稳压器有在轻载时提高同步稳压效率的功能。有些可以跳过脉冲或降低开关频率,使开关动作不那么频繁。另一种方法是关掉同步 FET 驱动,使用一个异步二极管与同步 FET 并联组成通路。这种方法在轻载工作时取异步运行效率,而在正常工作状态用同步运行效率。当然,每增加一个特性都会增加复杂性、成本或电路体积。因此,必须将这些可选方案与需求和约束进行比较来作出决定。
哪个是设计中最重要的因素?效率、成本还是体积?糟糕的是,对开关稳压器来说,这三大因素的计算要比线性稳压器复杂得多。比较好的着手解决的方法是采用一般的效率曲线图(如图 一体成型电感5 所示)来确定哪种方案最适合对效率的要求。搞清楚成本和体积的限制是很关键的。高的开关频率使得电路可以采用更小的电感和电容,从而能够降低整体体积和方案成本。但开关频率的升高可能会降低设计的总体效率。
由于可选方案众多,因此应该从多个线性和开关稳压电源供应商那里获得帮助。有了需求清单,就可以对一系列可行方案进行快速鉴别,还可以对没有公开发表的新器件进行研究。一旦可选范围缩小后,就可以计算各方案的效率、成本和体积,并且再次利用供应商的支持与工具,比较各种可能方案的特性。还应记住,尽管新型开关稳压器可能包括亚带隙基准源,但大多数仍然继续沿用标准的带隙基准源,因此多数开关稳压器的最小输出电压仍被限制为 1.25V。
这里要特别提一下开关电容变换器。开关电容变换器可以提供比线性稳压器更高的效率,无需使用电感。但是,它们的电流限制约为 300 mA。开关电容设计在电池供电的应用中很有吸引力,此时电感尺寸和 EMI 问题都是重要的限制因素。但是,采用
高频小信号LC 谐振放大器的设计0引言高频小信号放大器是放大中心频率在几百兆赫兹到几百千兆赫兹的高频小信号的放大器。它在通信电子系统中有着重要的用途,通常应用在广播、电视、通信、雷达等无线通信的前段接收机中,其对接收机的灵敏度、抗干
基于达芬奇技术的数字视频系统设计与实现摘要:达芬奇技术是业界第一款集成了DSP 处理器、软件、工具以及技术支持的综合型解决方案系列,非常适用于开发各种优化的数字视频终端设备。本文介绍了一种基于达芬奇技术的数字视频系统设计方案。详细阐述了该
白话数字电源数字电源的概念已经被提出多年,很多公司也已经推出了各种数字电源产品,可以说数字电源算不上是什么新生事物。然而,由于关于数字电源的宏观、中立 性的中文文献并不多,所以数字电源的轮廓依然并不十分清晰。多数
3/4 首页 上一页 1 2 3 4 下一页 尾页