以最新的DZC-4型智能低电阻测量仪为例
1 总体方案和技术指标
如图1所示,该仪器由5个部分组成:电源供应、精密恒流源、精密电压放大器、A/D 转换器、单片机控制器。其主要技术指标如下:测试范围:0~20Ω0~200Ω0~2 k(三挡量程自动环型电感切换);最高分辨力:0.001;测试电流:0.5 mA;测试精度:±(0.2%+2);整机耗电:<30 mA 。
2 硬件设计
(1)电源部分
整机采用6节5号镍氢电池供电(7.2 V)及通用DC/DC变换器,将电池电压转换成稳定的±5 V直流电压。该部分还有电池电压监测电路和充电电路,电池充满电 可以供仪器连续使用约50小时。
(2)恒流源
由精密基准电压源和高性能运放组成,向被测电阻提供精确的测试电流。测试电流选为0.5mA。由于精密电流源部分是整个仪器安全性能的薄弱环节,必须考虑各种内部和外部的可能因 素对仪器造成的损坏,从而影响安全性能。主要采取了以下措施:限制电流利用结型场效应管的恒流特性限制测试电流ITEST大小,一般取IDSS≈2*IT一体电感EST。为增加可靠性,采用两只场效应管串联。限制电压采用稳压二极管并联于测试端限压。
(3)精密放大器
由斩波稳零运放做测试信号的同相放大,因为A/D转换器的满量程电压为2 V,测试电流0.5mA,对应20,200,2K 三个量 程的同相放大倍数为200,20,2。在负反馈回路接入两个由单片机控制的模拟电子开关SW1 、SW2,用于3个量程不电感厂家同放大倍数 的切换:当量程为20 偈保琒W1,SW2均关闭;为200 偈盨W1开启;2k 偈盨W1,SW2均开启。仪器校验时应从低量程开始,否则不能校准所有的量程。另外,Ri,R1,R2, R3应选用精密电 阻和精密电位器,使温度的影响降至最低。
(4)A/D转换器
如图2所示,采用4 1/2位的ICL7135芯片,接成满量程为2 V的电压表 的模式。ICL7135用5位BCD码的形式向单片机提供数据,并提供过量程(OV)和欠量程(UN)信号给单片机用于量程自动切换。ICL7135的时钟频率来自T5(CD4060)的Q5端,频率为1.25 kHz,正好是工频50Hz的整数倍,能提高仪器抗工频干扰的能力。A/D转换频率约为:3.3次/s。T5的COUT端还提供4MHz的时钟频率给单片机。
此部分的功能有:数据采集、处理、显示、量程切换、电压监控等。本机显示模块有两片贴片电感74LS164分别用于LED数码管的位驱动和段驱动,共有5位数码显示,如图2所示。
单片机T2的25脚用于关闭显示模块的显示,以免数码管在数据传输过程中显示乱码。T2的 24脚是电池欠压检测输入,T2的23、22脚控制精密放大器的模拟电子开关,产生需要的放大倍数。
3 软件设计
本仪器最大特点是用软件实现自动调零和量程转换,省去故障率较高的电位器和量程切换 开关。软件调零的方法是:开机后单片机进行自检,如果系统工作正常就读取A/D转换的结果。当连续读取5个A/D转换结果后,判断它们是否都小于0.2Ω,否则,就认为操作者没有 将测试棒可靠短路,仪器继续显示调零提示符。如果连续5个值都小于0.2Ω,这时就找出其中最小值作为初始值,以后每次的测量结果都要减去初始值。
现场可编程门阵列的供电原理介绍现场可编程门阵列(FPGA)是一种可编程逻辑器件,由成千上万个完全相同的可编程逻辑单元组成,周围是输入/输出单元构成的外设。制造完成后,FPGA可以在工作现场编程,以便实现特定的设计功能。典型设计工作 谐波不和谐摘要非线性电气负荷产生的谐波电流增大了电力系统热损耗和终端用户的用电费用。这些与谐波有关的损耗降低了系统效率,造成设备过热并增加了电力成本和空调费用。随着谐波产生的负载量不断增加,在扩大或改造现有设施 [逆变器]【21ic分享赛】高效微逆变器_3经过一些小小的变动,把控制器换成了TI的Tiva板,效果是一样的
今天调试终于完成啦
不枉一番努力,哈哈,下面上成果图,输入电压暂时使用30V
输出设置10V,50Hz
输出设置10V,57Hz