如果 HB 与 HS 间电压上升速率变缓,或者 HB 与 HS 间电压先得以预建立,Qc 的驱动信号(图 6 中的蓝色线和红色线)的高电平脉冲将会变宽,这就能保证 Qc 导通,误脉冲就会被消除。
下文就围绕 HB 与 HS 间电压的上升斜率和预建立这两个方向来讨论,以解决 HO 的误脉冲问题。
图 6: HB 与 HS 电压斜率不同的影响
3、解决措施之增大 Cboot 电容
在相同充电速率条件下,增大 Cboot 电容可以将 HB 与 HS 之间的电压上升斜率变缓,以得到足够宽的高电平信号并使 Qc 导通。
3.1 Cboot 充电过程分析
如图 7 所示,UCC27201 内部有二极管(D1)连接 Pin1 (VDD)和 Pin2(HB)。在 Pin1 的外部连接有供电网络(电压为 12V),电容 Cd(1uF)和串联电阻 Ri(10ohm);在 Pin2 则接有 Cboot 电容。Cboot 电容的充电主要是通过 D1 这条路径完成的。
经过仿真分析(如图 8)知,Cboot 的充电主要包含如下两个阶段:
●阶段一:电容 Cd 通过 D1 给 Cboot 充电。充电电流如图 8 中的红色线所示,先是急剧上升到最大,然后缓慢下降。同时,电容 Cd 的电压(绿色线)逐渐下降,电容 Cboot 的电压(粉色线)逐渐上升。当 Cd 与 Cboot的压差减小为约 0.65V(二极管 D1 的正向导通压降)时,第一阶段结束。
●阶段二:12V 供电电压给 Cd 和 Cboot 充电。受限于 Ri,充电电流将小于 1.2A (12V/10ohm)。
图 8 中的仿真结果是基于 Cboot 为 300nF,图 9 的仿真结果则是基于 Cboot 为 100nF。对比二者知,修改 Cboot电容容量所带来的主要影响是第一个充电阶段的持续时间,分别约为 280ns 和 120ns。下节会分析第一阶段持续时间不同可能会带来的风险。
图 10 给出的是实测波形,其中 CH1 是 LO 的波形;CH2 是 HB-HS 的波形;CH绕行电感3 是 HO 的波形,CH4 是 VDD的电压波形。可以看到,在 UCC27201 上电后,VDD 电压快速下降,然后又缓慢上升,这与仿真结果一致。
图 7:Cboot 电容充电电路大电流电感 图 8:Cboot 为 300nF 时的仿真结果
图 9:Cboot 为 100nF 时的仿真结果 图 10:充电过程的实测波形
3.2 增大 Cboot 电容的风险分析
在 UCC27201 的实际应用中,需要注意内部二极管 D1 的反向恢复应力。
当 LO 的输出 由高变低后,HS 电压会升高,HB 电压同样也会升高,此时内部二极管将承受反压,并承受贴片电感随后出现的反向恢复应力。如果反向恢复应力出现之前时刻的二极管正向导通电流超出额定范围,反向恢复应力则会过大而导致二极管失效。UCC27201 要求内部二极管承受反向恢复应力前的正向导通电流在 2A 以下。
在该电源系统中,将 Cboot 修改为 300nF 后,电感器厂家二极管正向电流在约 280ns 后降低到 2A。而在开机的第一个周期内,下管的持续时间超过了 3us(如图 11,CH1 和 CH2 是全桥两个下管的驱动信号),即 3us 之后内部二极管才会有反向恢复应力,由于此时正向导通电流已经远低于 2A,二极管无可靠性风险。因此,修改 Cboot 容值到 300nF后二极管不会有失效风险。
图 11:开机时刻全桥下管的驱动波形
4、解决措施之 Cboot 电容预充电
给 Cboot 电容预充电,可以提前产生驱动信号以确保内部 Qc 导通。当系统发波后,LO 变高会产生充电路径而使 Cboot 快速充电,但由于此时内部 Qc 已经导通,HO 将不会产生误脉冲。
4.1 预充电电路
如图 12 所示,增加一颗电阻 RL后即可形成预充电电路。当 UCC27201 的 12V 建立后,在系统未发波前,12V电压可以通过路径 Ri->D1->Cboot->RL给 Cboot 充电。
经仿真知,当对 Cboot 电容预充电至 1V 左右,内部 Qc 就会导通。于是,随后的快速充电将不会再在 H工型电感器O 引脚产生误脉冲。根据 12V 建立到系统发波之间的延时时间,可以计算合适的 RL值,以保证 Cboot 预充电至 1V 以上。
[充电器]请问,7.4V的工装锂电池用5V充电有没有请问,7.4V的工装锂电池用5V充电有没有推荐的IC,电路?
有个产品用7.4V的锂电池供电,想要用5V的电源充电,就是想利用日常的手机充电器或者电脑来充电..
目前有没有合适的充电I
【集合贴】电子元器件资料集合(书籍,技术文章等) 文章摘自:LED社区(https://ledlight.专注于大电流电感设计、制造:电话 :181-2638-2251/module/forum/thread-592930-1-1.html
)
一.书籍
1.【书】电子元器件检测与维修完
典型反激式开关稳压电源的设计方案摘要:介绍了一种基于开关电源芯片FSDM0565R 的三相输入、多输出反激式开关稳压电源。分析了FSDM0565R 的特性和工作原理,并给出了它的设计电路图、实际参数的计算及器件的选取,最后给出了该电