所以,电感器生产(1-132)和(1-133)式所表示的结果,可看成是推挽式变压器开关电源在输出电压中含有毛刺(输出噪音)的表达式。
根据上面分析,在一般情况下,推挽式变压器开关电源的输出电压uo,主要还是由(1-128)、(1-129)、(1-131)等式来决定。即:推挽式变压器开关电源的输出电压uo,主要由开关电源变压器次级线圈N3绕组输出的正激电压来决定。
图1-28是图1-27推挽式变压器开关电源,在负载为纯电阻,且两个控制开关K1和K2的占空比D均等于0.5时,变压器初、次级线圈各绕组的电压、电流波形。
图1-28
图1-28-a)和图1-28-b)分别表示控制开关K1接通时,开关变压器初级线圈N1绕组两端的电压波形,和流过变压器初级线圈N1绕组两端的电流波工字电感器形;图1-28-c)和图1-28-d)分别表示控制开关K2接通时,开关变压器初级线圈N2绕组两端的电压波形,和流过开关变压器初级线圈N2绕组两端的电流波形;图1-28-e)和图1-28-f)分别表示控制开关K1和K2轮流接通时,开关变压器次级线圈N3绕组两端输出电压uo的波形,和流过开关变压器次级线圈N3绕组两端的电流波形。
从图1-28-b)和图1-28-d)中我们可以看出,当控制开关K1或K2接通瞬间,流过变压器初级线圈N1绕组或N2绕组的电流,其初始值并不等于0,而是产生一个电流突跳,这是因为变压器次级线圈N3绕组中有电流流过的原因。
当变压器次级线圈N3绕组有负载电流流过时,其产生的磁通方向正好与流过变压器次级线圈N1或N2绕组励磁电流产生的磁通方向相反,因此,流过变压器初级线圈N1绕组或N2绕组的电流也要在原来励磁电流的基础上再增加一个电流,来抵消流过变压器次级线圈N3绕组电流的影响。增加电流的大小等于流过变压器次级线圈N3绕组电流的n倍,n为变压器次级线圈N3绕组与初级线圈N1绕组或N2绕组的匝数比。
从图1-28-f)中我们可以看出,流过开关变压器次级线圈N3绕组两端的电流波形是个矩形波,而不是三角波。这是因为推挽式变压器开关电源同时存在正、反激电压输出的缘故。当变压器同时存在正、反激电压输出时,反激式输出的电流是由最大值开始,然后逐渐减小到最小值,如图中虚线箭头所示;而正激式输出的电流则是由最小值开始,然后逐渐增加到最大值,如图中实线箭头所示;因此,两者同时作用的结果,正好输出一个矩形波。
从图1-28-e)还可以看出,输出电压uo由两个部分组成,一部分为输入电压Ui通过变压器初级线圈N1绕组或N2感应到次级线圈N3绕组的正激式输出电压(uo),这个电压的幅度比较稳定,一般不会随着时间变化而变化;另一部分为励磁电流通过变压器初级线圈N1绕组或N2绕组存储的磁能量产生的反激式输出电压[uo],这个电压会使波形产生反冲,其幅度是时间的指数函数,它会随着时间增大而变变小。
这里还需指出,图1-28-e)中的波形有上冲,在纯电阻负载中是正常的,尽管N1和N2互相都可以把对方看成是变压器次级绕组,并对高于输入电压Ui的反电动势电压进行限幅,但因为线圈N1绕组与线圈N2绕组之间有漏感,线圈N2绕组与线圈N3绕组之间也有漏感,况且,控制开关在刚接通瞬间有比较大的电阻,因此,变电感器价格压器次级线圈N3绕组瞬间反激输出电压高于正激输出电压是肯定的。不过在大多数情况下,最好还是采用半波平均值的概念来进行电路分析或计算,以免需要进行复杂的指数函数运算。
当要求推挽式变压器开关电源输出电压波形的反冲幅度很小时,可采用如差模电感器图1-29所示的电路。图1-29与图1-27相比,多了两个阻尼二极管D1、D2,它们分别与控制开关K1、K2并联。当控制开关K1由接通转换到关断时,在N2线圈中产生的感应电动势e2,不管K2处于什么工作状态,接通或关断,只要N2线圈中产生的感应电动势e2的幅度超过工作电压Ui,二极管D2就会导通,相当于感应电动势e2通过二极管D2被工作电压Ui限幅,同时也相当于变压器次级线圈N3绕组输出电压uo也要通过电磁感应被Ui进行限幅,而二极管D2对控制开关K2的工作几乎不受影响。
基于A-Delphi方法的信息系统安全评价模型研究 摘 要: 针对信息系统安全评价现有方法中各评价指标由研究者主观提出的实际情况,提出了一种新的综合层次分析法并结合德尔菲法的A-Delphi方法构建分层结构评价体系,运用该评价体系建立了一个适用于信
印刷媒介数字化浪潮出版是现代科技与文化结合的产物,纵观印刷媒介发展史,实则是技术发展和文化变迁史。数字化技术的发展使科学与文化的融汇同样成为新世纪人类文化整合的重要部分。技术发展催生
静电的危害分析及LED静电的解决方法静电就是物体表面存在过剩或不足的静电荷,它是一种电能。静电是正负电荷在局部范围内失去平衡的结果,静电是通过电子或离子转移而形成的。静电的危害静电放电(ESD) 引起发光二极管PN结的击穿,是LED器件