(很少的几伏特)
功率因数部分
对谐振式应用,在我们的插件电感器设计中,加入它还有如下理由:不管PFC是否必要。
前级的变换为传统的脱线式。由全波整流,电容滤波组成从AC线路得到未稳的DC总线。因此,连续的线路电压是长时间在电容上的低电压。这样整流器仅传导每个半周期的很小一部分。从主线的电流被拖出,然后一系列窄脉冲,其幅度为5~10倍的平均DC值。
从这里返回的损失,更高的峰值和均方根值电流从线路上拉出。AC线路电压的畸变,三相系统自然线路中的过流,在这所有之后,会是很差的电源系统的供给能量的能力。
这可以一体电感器由测量整个谐波畸变项来得出。作为正常供电时,功率因数为实际功率和视在功率之比。从主干线上拖动的功率更直接。传统的输入级电容滤波只有很低的PF值(0.5~0.7)以及较高的THD(>100%)。国际正常标准需求要有高的功率因数来完成电源设计。
基于上述理由,功率因数校正为脱线电源管理中正在流行的部分。对高功率因数的预调整器,在输入整流桥和滤波电容之间插进去,会改善功率因数到0.99,供给电流能力也增加了,滤波电容峰值电流及谐波畸变都会减小。
再者,PFC有预调整的高压总线,它提供一个重要的优点。因为PWM工作在固定的直流总线上,这会使谐振式工作变得容易控制。
L6561是一个集成控制器,专用于PFC级,它采用临界型传导技术,并对低功率到中功率很适用。
PFC部分提供一个给出80W功率及400V稳定电压的设计。
AC主线电压可从85~264V。
对L6561细节描述可见A贴片电感N966。
评价结果。
表格1
附录A
掌握谐振元件的方法是采用正常电压、电流。
最小工作频率设在65KHg,该频率可考虑一个好的折中的办法。既保持变压器的磁化设置的小尺寸。又防止高频问题。(如杂散参数开关损耗等)
让我们固定正常输出电压M=0.98 M=(VO*N)/(VIN(MAX)/2)屏蔽电感器
假设正常工作电流J = 0.2 J =(IO*RO)/(VIN(MAX)/2)
此处RO是特征阻抗 = (Lr/Cr) 0.5
谐振ZO可按下式计算 ZO =((VIN/2)2*J*M)/(VO*IO) ZO = 120
谐振电容一体电感是:Cr = 1/(ZO*W) Cr = 1/(110*2∏*65*103) = 20nF
谐振电感是:L r = ZO/W Lr = 110/(2∏*65*103) = 电感生产295mH
利用专用晶圆加工工艺实现高性能模拟IC当今电子产品对性能和精度的要求越来越高。这些产品涵盖我们日常使用的各种设备(比如,手机、音响系统和高清电视)以及只会间接接触到的设备(比如CT扫描仪和工业控制系统),系统大多采用某种数字微处理器或DS
智能交错—实现高效 AC/DC 电源的先进 PFC 控制交错是一种特殊的并联方式,即在两个或多个功率级 (通常称之为相位或通道) 之间存在独特的相位关系,为了保持两级设计所拥有的全部纹波电流消除优势,必须让各个通道彼此间相差180°同差。由于每个通道都是针
抛弃细枝末节,专注原型创意市场中很多凭借绝妙创意而大获成功的电子产品或设备。独特创意的核心是最终能够使一款设备从其他设备中脱颖而出、在某种情况下甚至可定义一种全新的产品类型。当然,在市场中定义产品独特性的因素还有很多,例如低成