不管我们是否要控制输出电压或输出电流,Boost调节器都要比Buck调节器更难设计。持续导通状态(CCM)Boost转换器中的平均感应电流等于负载电流(LED电流)乘以1/(1-D),这里D是占空度。Boost电压调节器需要设计者考虑到输入电压的限插件电感器制来保证电感的正确设计,特别是额定峰值电流。
LED光源生产商和设计者经常会提到固态发光的应用最明显的优势就像是“树上挂得很低的水果”。例如花园路径照明或者MR16杯灯常常只需要一些甚至只要一个LED。
对于低压照片来说,最通用的电压是12VDC、24VDC和12VAC。这些应用常常要用到一个Bulk调节器。虽然如前所述,Bulk是首选,但是在LED照明应用中,随着LED数量的增加,Boost调节器也得到了越来越多的应用。设计者们不再满足于手电筒或者单个杯灯应用,而把目光投到大尺寸通用照明和达到几千流明的照明系统。例如街灯、公寓和商业照明、体育场照明和建筑内外装饰照明。
图1:带有Vo计算的Bulk和Boost LED驱动buck:VO=nxVF,VOVIN。
仍然需要常电流
如同线性和Buck衍生LED驱动一样,BoostLED驱动设计中的主要技术挑战是要给阵列中的每个LED提供一个可控前向电流IF。理想状态下,每个LED都有安装一个单组链来确保通过每个设备的电流都相同。当需要把输入DC电压提升到一个高DC输出电压的时候,Boost调节器是最简单的选择,因为它允许在给定电压下串联更多的LED。
通用照明系统设计者通常需要把线路电压设计成110VAC或者220VAC。如果功率因数校正(PFC)、隔离和线路谐波滤波都不需要的话,那么单级非隔离转换器(buck,boost,或各种buck-boost拓扑)就可以使用AC电压的校正输出来直接驱动长串的串接LED。
然而,在很多情况下,我们需要使用一个中间DC总线电压,它是由一个采用了通用AC输入并且PFC、隔离和滤波的AC/DC调节器产生的。包括法律要求在内,一个低中间电压总线降低了电介质击穿和电弧问题,使维修人员的的工作更安全。
欧盟提出了世界上最严格的法律规定:任何高于25瓦的光源都要具有PFC。没有几年,北美和亚洲也做出了同样的规定。诸如UL和CE这样的安全标准电气规定限制了供给boostLED驱动的AC/DC供电输出电压。通常电压规定为12和24V,有时是48V。这些中间电压总线很少超过60V,也就是ULClass2定为DC电压的最高值。
Boost调节器
不管我们是否要控制输出电压或输出电流,Boost调节器都要比Buck调节器更难设计。持续导通状态(CCM)Boost转换器中的平均感应电流等于负载电流(LED电流)乘以1/(1-D),这里D是占空度。Boost电压调节器需要设计者考虑到输入电压的限制来保证电感的正确设计,特别是额定峰值电流。
BoostLED驱动加了一个共模电感可变输出电压,这个电压影响了占空比,因此也影响了主电感器的电感值和额定电流。为了避免电感饱和,最大平均值和电流峰值必须由VIN-MIN和VO-MAX同时求出。例如,历数加工、驱动电流和模具功率电感温度,一个标准的白InGaNLED的VF可以从3V变到4V。串联的LED越多,VO-MIN和VO-MAX的间距就越大。
不同于带有输出电感的Bulk调节器,Boost转换器有一个非持续输出电流。因此,输出[url=]电容[/url]需要输出电压要持续(输出电流也如此)。这里,电压调节器中的输出电容被设计成兼有滤波器并且在负载瞬变时可以保持输出电压,在电流调节中,它只是起到了类似一个AC电流滤波器的作用。电容值要尽量低,并且要与所期望的LED波动电流保持一致。输出电容越小(同时也可以尽量降低成本和大小),转换器对输出电流的回应就越快,这样LED的调光反应就越好。
Boost转换器的另外一个严峻挑战是控制环。Buck功率电感调节器允许电压模式的PWM控制、峰值电流模式的PWM控制、constant/controlledon-time以及其它的滞后控制。注意到处于CCM的Boost调节器(低功率、便携设备除外)的右半平面零和在控制[url=]开关[/url]关闭的时候还在向输出供电的特性,它们几乎被限定在峰值电流模式PWM控制。要设计一个控制输出电流的BoostLED驱动,控制环必须要把LED看作是负载来分析,这与Boost电压调节器的典型负载非常不同。
在峰值电流模式控制中,负载阻抗对DC增益和控制到输出转换函数的低频极点有很大影响。对电压调节器来说,负载阻抗由输出电压与输出电流的比值来决定。LED是个拥有动态电阻]的二极管。这个动态电阻只能通过做出VF(IF)曲线,然后用切线来找到希望的前向电流的斜率来决定。如图1所示,电流调节器使用负载本身来作为反馈分频器来闭环。这就使DC增益降低了(RSNS/(RSNS+rD))倍。
利用低功耗微控制器开发FFT应用1 概述 如今的低功耗微控制器(μC)也开始集成原先只存在于大型微处理器、ASIC和DSP中的外设功能,使我们有可能以很低的功耗实现复杂的算术运算。本文讨论一种快速傅立叶变换(FFT)应用,并在一个含
基于Infineon的起动/停止交流发电机控制设计方英飞凌提供各种产品,从微控制器、传感器和收发器到智能功率驱动器。通过整合技术和系统专业知识,英飞凌成了值得信赖的、能够帮助客户在引擎管理和传输领域实现更高性能的合作伙伴,进而降低燃料消耗量和废气排放量
TI热门信号链基础系列之 54:谁是音频时钟的“老关键词:I2S、主时钟、MCK、PLL、BCK、LRCK、压控振荡器、VCO、音频、模拟、半导体、德州仪器、TI信号链基础知识#54 谁是音频时钟的 老板 ,谁是主,谁又是从呢?作者:Dafydd R