引 言
现有智能机器人用直流电机作为驱动轮时一般都是用单片机或者高速的DSP等进行控制,智能机器人之所以叫智能机器人,这是因为它有相当发达的“大脑”。在脑中起作用的是中央计算机,这种计算机跟操作它的人有直接的联系。最主要的是,这样的计算机可以进行按目的安排的动作。正因为这样,我们才说这种机器人才是真正的机器人,尽管它们的外表可能有所不同。而且同一机器人往往需用多个CPU来实现各自的功能,但随着对机器人的智能化要求越来越高,需要一种新的控制器(使用一个处理器)来满足机器人的各种行为要求,例如视频采集、无线通信。本文介绍的利用ARM实现的智能机器人平台,为智能机器人的开发提供了一个新方法。Linux的引入使其他智能模块都以设备的形式存在,只有在用户需要的时候才调用相关设备驱动从而使数据融合更方便,运行多任务也更稳定。
利用ARM和嵌人式Linux作为智能机器人平台具有很大的优势,但在国内还未发现用该平台开发智能机器人的系统。本设计完成了对该系统驱动的初步编写,并通过实际验证,取得了良好效果。
1 驱动电路及测速方法
1.1 总体结构及驱动电路
系统的整体结构框图如图l所示。
本设计采用的LMD18200的电感器生产真值表如表1所列。通过ARM的I/0口(例如D口的DO~3)来控制电机的工作状态。
1.2 测速方法
ARM没有捕获外部脉冲的计数器,它的定时器是用来计算内部脉冲的。码盘输出信号接外部中断处理程序(EINTl)并设置上沿触发变量,在中断中设置一全局变量i,用i++累加。设置定时器timer0,使它O.36 s产生1次内模压电感部定时器中断。当一个定时器周期完成时引发定一体电感时器中断,在timer0中断中读出i的值,即得到O.36 s内码盘转动所产生的脉冲数;接着将i清零,为下一个定时器周期捕获脉冲作准备。
1.3 测量精度分析
智能机器人选用的光码盘精度为256线,即256脉冲/转。电机减速比为1:71,车轮半径R为6 CM,车轮间距为41.1 cm.车轮转一圈所产生的脉冲数n=71×256=18 176,可以得到每个脉冲之间的距离d=27πR/n=2×3.14×0.06/18 176=0.207×10-4m,即每个脉冲对应的控制精度达0.02 mm.考虑到负载变化的影响,理论值与实际值会出现误差,因此在控制精度d前乘以一个修正系数k.表2为机器人直线行走的实验数据。可以看出,k为1.10误差较小,最接近真实值,因此该值就是所需的比例系数。
2 速度调节
一般的PID调节,PID调节是工业控制中应用最广泛的一种调节方式,在各种自控书籍及资料中,也经常看到PID这个字眼,那么什么是PID调节呢,PID是英文单词比例(ProportiON),积分(Integral),微分(Differ绕行电感ential coefficient)的缩写。PID调节实际上是由比例、积分、微分三种调节方式组成,它们各自的作用如下:比例调节作用:是按比例反应系统的偏差,系统一旦出现了偏差,比例调节立即产生调节作用用以减少偏差。比例作用大,可以加快调节,减少误差,但是过大的比例,使系统的稳定性下降,甚至造成系统的不稳定。当偏差E较大时(如启动或大幅度提速时),由于积分的作用会产生很大的超调量,使系统振荡,因此选用积分分离的方法,开始时取消积分作用,直到被调量相差不多时才引入积分作用。具体步骤如下:
①设定一个值a>0,E(m)一R(m)一M(m),其中R(m)为给定值,M(m)为测量值;
②当E(m)≥a时,采用PD控制,可以避免过大的超调,又可以使系统有较快的响应;
③当E(m)≤n,即偏差值E(m)比较小时,采用PID控制,可以保证系统的精度。
使用积分分离方法后显着降低了被控变量的超调量并缩短了过渡时间,使调节电感器的检测性能得到改善。
[开关电源]开关电源的频率对音频的音响最近在为音箱选型电源,看了下NE5532和功放TPA3130D2,大部分选择的电源都不是开关电源,一般都使用环形变压器,那么是不是开关电源的频率会对音频造成音响。
频率越高,造成的噪声越
[DCDC]buck电路中电感的疑问?楼主现在在用buck电路做太阳能充电,之前做了个最大电流10A的(真实应用最大也就2A,因为电池容量小),现在要做40A的,发现问题越来越原始了(惭愧)。
我在想在电感选择时,计算值都按最大
基于EP7211实现传呼信息实时语音合成和播放原理概述:阐述在一款集成传呼功能的二合一PDA系统中,使用嵌入式处理器EP7211实现个人传呼信息的实时语音合成和播放的功能,主要包括字符语音库的建立、字符语音合成自满和Cdec语音中断服务例程等3部分。