(1)RBSOA的失效:在额定电压下关电感厂家断箝位电感电流Ilm时,由于关断来自IGBT发射极的沟道电子电流,寄生PNP管发射极注入到高阻漂移区(PNP管的是基区)的少子空穴一部经过PNP管的基区从IGBT的发射极流出。当该空穴电流Ih在NPN管的基区电阻R b上压降Ih·R≥0.7V时,NPN管导通,其共基极放大系数αnpn迅速增大。同时由于PNP管的集电极处于高压,集电结耗尽层宽度(Xm)很宽,使PNP管的有效基区Wb变窄,α pnp也增大。当α npn+α pnp1时出现动态锁定而烧毁。因此直角安全区是IGBT可靠性的重要标志。由图2可见NPT型IGBT具有直角SOA,而PT型IGBT是梯形安全工作区。这说明PT型IGBT在额定电压下关断的箝位电感电流Ilm比NPT型IGBT要小。其抗高压大电流冲击能力和短路能力都不如NPT型IGBT。
对于SSOA的关断失效机理和RBSOA的失效是相同的。
对于FBSOA、SCSOA和SSOA的开启状态,三者都工作在有源区的高压大电流状态,因为处于正偏而瞬间电流为DC额定电流的2-10倍。IGBT中寄生的NPN管和PNP管的α npn和α pnp均随工作电流的增加而增大。当α npn+αpnp1时出现静态锁定烧毁。
(2)SCSOA的失效:由于短路电流ISC可能高达10倍于直流额定电流,在短路时间TSC内产生的焦耳热过量,来不及消散而产生热烧毁。
例如:100A 1200V的NPN型IGBT,当TSC=10μs时产生的能量:
ESC=Vce·Ic·Tsc=12焦耳。
该能量产生在P阱PN结耗尽层X m中,耗尽层中的电场ε=1200V/Xm。这时,Xm (1200V)约为200μm,所以ε=6×104V/cm。定义εm≥3×104V/cm为强电场,现在,ε>εm电子在强电场下的漂移速度达到饱和。饱和的原因是强电场下光学波声子散射,通过光学波声子散射将外电场的能量传递给遭散射的晶格。量子物理提出一个基本事实:“尽管在固体里面电子是在密集的原子之间高速运动,只要这些原子按严格的周期性排列,电子的高速运动并不遭受散射”。Si单晶片和外延片扁平型电感中的缺陷就是晶格周期排列的破坏。缺陷密度大的部位散射截面就大,这时,从外电场接受的能量就多,该部位晶格振动就剧烈,使晶格温度t1升高。当t1大于硅的熔点(1415℃)时,出现Si熔洞而烧毁。这就是为什么烧毁的器件解剖后均发现Si熔洞的原因。这里我们从超出SCSOA的应用为例对烧毁机理做了上述分析。对于超出SCSOA的应用为例对烧毁机理做了上述分析。对于超出FBSOA、SSOA和RBSOA一样,只要偏置电压和偏置电压对应的耗尽层宽度Xm之比大于3×104V/cm,均可能产生上述烧毁。电感器原理
解剖发现Si熔洞的面积A si约100μm2~1mm2。晶电感生产厂家格温度为:
T1=Ic·Vce·Tsc/Dsi ·Csii·Asi·X m (1)
式中Dsi和Csi分别为Si比重和热比。Csi=0.7焦耳/克℃,Dsi=2.328克/cm3。我们假设在10μs的短路时间内产生能量的10%让强散射区吸收,并取Asi=1mm2,将相关数据代入(1)式得:t1=3600℃。该温度已大大超过Si的熔点1415℃,难怪烧毁后的Si片出现熔洞。
4、 短路持续时间Tsc和栅压Vg、集电极—发射极导通电压Vce(on)越大Tsc的关系
图5表示Tsc ~Vce (on)的关系曲线,可见集电极—发射极导通电压Vce(on)越大Tsc越长。图6表示Vg和Isc、Tssc的关系,由图6可见随着Vg的增加Tsc下降而Isc上升。
从目前IGBT生产中所用Si材料来讲,有外延材料和高阻单晶材料两种。用外延材料生产的IGBT在高压击穿时耗尽层穿通高阻移区而称为PT—IGBT。用高阻单晶片生产的IGBT,由于高阻漂移区较厚,高压击穿时不被穿通而称为NPT—IGBT。从沟道来分有平面栅和沟槽两类。PT-IGBT又分为PT、SPT(软穿通)和FS(场中止)IGBT。PT、SPT和FS-IGBT都有缓冲层,FS实际也是缓冲层,其结内电场为梯形分布。PT、SPT和FSIGBT可以做成平面栅,也可以做成沟槽栅。沟槽栅具有更低的导通压降Vce(on)。外延PT—IGBT的最高击穿电压为1200V。1700V以上的IGBT多用于高阻单晶材料,其结构为NPT结构。NPT—IGBT可做成平面栅,也可做成沟槽栅。加缓冲层的NPT结构又称FS—IGBT。
基于软开关技术的DC/DC功率变换器的设计O 引言 基于软开关技术的全桥0C/DC变换器在高频、大功率的直流变换领域,有着广泛的应用前景,它提高了系统的效率,增大了装置的功率密度。本文设计的变换器现正应用于电子模拟功率负载中,该负载系统要求能
加强背光照明解决方案如今,大部分便携式设备尤其是移动电话中的键盘背光照明以及其他装饰灯都倾向于采用个性的设计方式。然而,显示屏的背光和键盘的背光在要求上是不同的,而且这分别会影响到相关LED的驱动方法。现在大部分的便携式
Vishay将在2016慕展上展出应用于汽车的业内领先 日前,Vishay Intertechnology, Inc.(NYSE 股市代号:VSH)宣布,将参加 2016 慕尼黑上海电子展上(3 月 15-17 日,上海新国际博览中心)。在 E3 馆 3502 展位,Vishay 将展出其业内领先的