OC1A 或OC1B 引脚上PWM 输出波形的频率由下式确定,式中的N 取值为1、8、64、254 或1024(分别代表分频系数)。
fCLK_IO 为时钟频率,为8MHz,取N=1,即不对时钟进行分频,TOP 值代表CNT1 计数的最大值,跟PWM 位数有关,当选择8 位快速PWM 模式时,TOP=255,则村田电感输出频率为31.25KHz;选择9 位快速PWM时,TOP=511,则输出频率为15.6KHz,综合比较,选择9 位快速PWM 输出模式,能同时满足频率和精度的要求。频率确定后,还需确定占空比(波形)。引脚OC1A 或OC1B 的输出波形取决于触发器OC1A 或OC1B。在T/C1 设置成反向比较匹配输出模式下时,若TCNT1 中计数值和OCR1A 或OCR1B 中比较值匹配相等时,OC1A 或OC1B 触发器被清零,OC1A 或OC1B 引脚输出低电平;若TCNT1 中计数值继续计数到TOP 值并由此而返回0000H,则OC1A 或OC1B 被置位,OC1A 或OC1B 输出高电平。工作时序如图3-2 所示。当TCNT1 中的计数值达由TOP 值变为0000H 时,T/C1 产生溢出中断,置位中断标志位TOV1,若中断是开放的,则MCU 会立即转入相应中断服务程序。TOV1 也由硬件自动清零,向该标志位写”1”则由软件清除该标志位。在中断服务程序中改变OCR1A 的值,则其PWM 波形占空比会发生相应变化 。图3-2 T/C1 反向比较匹配输出模式工作时序本系统中,我们只需要一路PWM 信号即可,这里用OC1A 引脚产生,采用9 位快速PWM 模式,频率为15.6KHz,当要改变输出占空比时,改变OCR1A的值即可。
3.2.2 驱动信号形成及死区发生
H桥要由4 路其中两路反向的波形来驱动,因此需将PWM 波形进行反向处理。此外,还需加入防止H 桥上下扁平型电感臂直通的延时电路。如图3-3 所示。
EN 为PWM 输出使能信号,当EN 为低电平时,封锁输出与门,输出全为低电平,电机停转。同时输出与门也起着整形的插件电感器作用。PWM 信号一路直接输入与门,另一路经反向后送入与门,增加其驱动能力。D1、R5、C9,D3、R9、C12构成死区发生,利用阻容充电,使波形缓慢上升,再利于与门的阈值电压(VCC/2,这里为2.5V)对波形进行整形。下降沿时,电容通过二极管进行快速放电,这样就行成了导通延时。各点波形如图3-4 所示。更新OCR1A或OCR1B的值,置位TOV1中断标志标志位TCN差模电感器T1OC1A或OC1B死区时间插件电感器为△t,对MOSFET,死区时间可取0.2-1μs。本文将R5 和R9 用可变电阻代替,将死区时间设为500ns。
经过该电路处理后,一路PWM 信号变成4 路PWM 信号,其中PA、PC 同相,PB、PD 也同相,这两组信号互为反相且存在死区。
图 3-4 死区波形
数字印刷起源于特殊需求对数字印刷的起源有两种不同的看法。有人认为,数字印刷在传统印刷的基础上演变而成,但迄今为止不能找到数字印刷与传统印刷技术的关联性,至少从数字印刷的技术属性上考察,认为数
基于单片机IAP技术的LED显示屏控制系统摘要 在研究现有LED显示屏电路的基础上,提出一种基于IAP单片机传送8位串行显示数据的LED显示控制系统。给出与基于该控制系统的数据组织方法相应的硬件电路。以256 64点阵双色LED显示屏为例说明
LED电源的几种保护电路1. 直通保护电路半桥和全桥是开关电源常用的拓扑结构, 直通 对其有很大的威胁,直通是同一桥臂两只晶体管在同一时间内同时导通的现象。在换流期,开关电源易受干扰而造成直通,过大的直通电流会损坏用于逆变的