使用基准电压源缓冲器时,可通过在基准电压输出添加一个极低截止频率的RC滤波器,对来自基准电压源的噪声进行带宽限制,如图8所示。考虑到基准电压源通常是噪声的主要来源,这样做可能会非常有效。
图8. 带RC滤波的基准电压源
选择基准电压源时的一些其它重要考虑因素包括初始精度和温度漂移。初始精度以%或mV为单位。许多系统允许校准,因此初始精度不如漂移那么重要,而漂移通常以ppm/°C或µV/°C为单位。大多数优秀的基准电压源漂移低于10 ppm/°C,而ADR45xx系列更是将漂移驱动至仅有数ppm/°C.该漂移必须纳入系统误差预算中。
基准电压源故障排除
设计不佳的基准电压源电路可能导致严重的转换错误。最常见的基准电压源问题是来自ADC的重复或“粘连”代码问题。当基准电压源输入端噪声足够大,便可模压电感器能造成ADC作出错误的位判断。哪怕输入有所改变,它也以同样的代码重复出现多次,或者在较低的有效位中填充重复的1或0字串,如图9所示。红功率电感器色圆圈区域中,ADC出现粘连,重复返回相同的代码。贴片电感通常满量程附近的问题更严重,因为基准电压源噪声对较高有效位的判断产生的影响更大。一旦作出错误的位判断,其余位便填充1或0.
图9. ADC传递函数中的“粘连”代码
导致出现“粘连”位的最常见原因是基准电压源电容的尺寸与位置、基准电压源/基准电压源缓冲器的驱动能力不足,或是基准电压源/基差模电感准电压源缓冲器选型不当导致过量噪声。
将储一体电感器能电容放置在ADC的基准电压源输入引脚附近并使用宽走线实现连接很重要,如图10所示。使用多个过孔将电容连接至接地层,可获得较低的阻抗路径。若基准电压源具有专用地,则电容应当通过宽走线连接至该引脚附近。由于电容用作电荷库,它必须足够大,以限制衰减,并且必须具有低ESR特性。具有X5R电介质的陶瓷电容是个不错的选择。电容典型值为10 µF至47 µF范围内,但根据ADC的电流要求,有时也可使用较小数值的电容。
图10. 典型基准电压源电容布局
驱动能力不足是另一个问题,特别是使用低功耗基准电压源或微功耗基准电压源缓冲器,因为它们通常具有高得多的输出阻抗,随频率而明显增加。使用吞吐速率较高的ADC时,这个问题尤其明显,因为吞吐速率较低时,电流要求更高。
来自基准电压源或基准电压源缓冲器的过量噪声与转换器的LSB大小有关,也可能会造成粘连代码,因此基准电压源电路的电压噪声必须保持为LSB电压的一小部分。
结论
本文设计了一种精密逐次逼近型ADC设计基准电压源电路方案,并强调了如何判断某些常见问题。文中的计算公式用于估算基准电压源电路的驱动能力和噪声要求,以便有更高的概率使该电路通过硬件测试。(作者:Alan Walsh)
便于集成的智能化电源模块监控系统研究 随着电力电子技术的快速发展,开关电源越来越受到重视,尤其是在通信、电力领域中得到了广泛应用。 近年来,为了提高电源使用的方便性和简易性,电源的模块化和集成化成为研究的重要课题。电源采用模块化设计使得
超越规格:更高电流的供给与测量太阳能电池、电源管理器件、高亮度LED和RF功率晶体管的特性分析等高功率测试应用经常需要高电流,有时需要高达40A甚至更高的功率,MOSFET和绝缘栅双极晶体管(IGBT)将需要100A以上的电流。但
系统设计工程师便携式设备电源设计攻略从产品定义规划人员的角度来看,便携式设备两个最重要的电源设计指标是连续工作时间和待机时间。那么,对一个负责产品开发的系统设计工程师来讲,从哪些方面入手才能使得这两个指标性能最优呢?很显然,我们首先应考