移除跳线J1将关闭LED链,以支持连接至VOUT端子与LED端子之间的外部负载。
电阻R44是频率响应分析仪在VFB与FB端子的信号注入点。它的存在不会影响系统环路响应。通过在R44两端注入频率响应分析仪信号,将可以测量控制输出(FB/VC端子)、放大器(VC/VFB)及闭环形式中的开路增益(FB/VFB)响应。
LED交流动态阻插件电感器抗特性鉴定
根据制造商数据表中在特定工作条件下测得的特征曲线,可以近似得出LED动态阻抗。系统具体热工作条件可能大不相同。第1部分的文章中介绍了系统LED动态阻抗的系统级方法,这方法对器件进行了系统级热条件下的特性鉴定。就第2部分的文章而言,我们电感生产厂家使用频率响应分析仪,在100% PWM占空比的热稳定工作条件下,测量电路内的电流感测电阻、PWM FET阻抗及累积串联动态阻抗(见图3)。
图3:电流感测反馈网络的电路内小信号响应。
闭环分析
第1部分的文章中推导出了控制输出(Vout)表达式H(s)。功率提供给LED串,但反馈控制项是LED电流感测电阻电压VRsense (见图4)。受控系统传递函数H(s)必须根据等式(1)来调整。
图4. 电流感测反馈
在热稳定的系统级工作条件下测量了LED动态阻抗、串联PWM晶体管及电流感测电阻参数。VIN = 12 V、Iout = 116 mA为工作参数。测得的开环响应Hc(s)波特图及测量结果如图5所示。表1列出了测得的参数,用于计算图1所示的电路图。
图5. 控制至输出响应——测量结果与计算值对比电感器图
表1. 演示板电路参数
在高频时,理论计算与实证阶段测量值之间的差异变得明显。差异归因于等式(1)的调制传递函数分子中缺少RHPZ项,在参考资料[4]的简化计算中被描述为一项局限。
低频增益理论值与测量结果之前的些微差异(约1 dB)被观察到。升压电感、晶体管及整流器的工作损耗在推导直流工作点的过程中被忽略。如果顾及这样的损耗,占空比直流 工作点将会略大,导致低频增益减少。通过调整 等式(2)中的Vin (减小输入电压以减小电阻损耗)及Vout(增加输出电压以纳入升压二极管电压降)项,就可以观察到这一点。
系统性能
图1中所示的LED调光电路的1000:1 200 Hz PWM调光工作波形如图6所示。VC波形上有少许补偿电容电压放电,这是Q9双向开关响应时间与透过D19的PWM钳位激活之间的竞争条件产生的结果。电阻R29被引入,与钳位二极管D19串联连接,以限制补偿网络电荷差模电感耗尽。VFB波形维持想要的数字波形及幅值(无模拟调光)。
PWM信号指令转为低态后出现额外短路持续时间GDRV波形(第6个脉冲),这是NCV887300内部逻辑传播延迟响应时间的结果。此额外脉冲的能量有利于帮助维持输出升压电容中的电荷,因为它补偿了深度PWM调光工作模式期间的某些寄生漏电流能量损耗。
图6:1000:1 200 Hz深度调光工作
结论
本文第1部分介绍的驱动LED串的DCM升压转换器的理论小信号响应等式在本文第2部分中有效地应用于分析LED PWM调光电路。我们探讨了200 Hz 1000:1深度调光能力的实际层面问题。我们得到了仿真和测量结果,与忽略相位误差的情况进行比较;由于理论表达式中缺少RHPZ项,导致高频时出现相位误差。1000:1 200 Hz PWM工作波形显示出了极佳的工作性能。
TPS759XX系列电压调节器特点介绍TPS759XX系列是TI公司专门为DSP、ASIC和FPGA等多芯片系统供电而设计的LDO线性稳压器,图1是电路简化原理框图。TPS759XX共有5个引脚,VIN是输入电压,VOUT是输出电压,FB
用于±10 V输入的单电源、完全隔离式数据采集系 连接/参考器件AD8606/精密、低噪声、双通道CMOS、轨到轨输入/输出运算放大器AD7091R/ 1 MSPS、超低功耗、12位ADCADuM5401/集成DC/DC转换器的四通道2.5 kV隔
虚拟远端采样控制器惠及视频安保背景即使在恐怖主义威胁引起世人高度关注之前,许多公共和私有机构也已开始在重要的基础设施中安装视频安保系统。视频安保提供了改善态势感知、防止恶意破坏、偷盗或其他犯罪、加快反应和管理决策速度以及提高全体人