读写寄存器的一个例子是C032,Meter Number (电表号)。写入数值不会对电表操作产生任何影响,而且可以随时提取该数据。最后,一个具有额外功能的读写寄存器例子是C030,Met电感生产er Constant, active (有效电表常数)。当这个寄存器被写入数据时,寄存器管理器不仅要更新EEPROM,同时也要更新DSP程序使用的电表常数。
哪些任务需要寄存器信息?
下表列出了需要寄存器信息的任务。
通常,你主要考虑添加可通过消息译码器访问的寄存器。你可以共模电感器增加用于显示的寄存器(或者用于其它任务的寄存器,但是依据惯例,你会主要考虑那些可通过通信端口检索的寄存器)。
读写寄存器
首先考虑第一种情况,即存储和读取无额外功能的读写寄存器。为了添加一个存储于EEPROM内的寄存器,你必须添加两处信息:MAXQ3120RD.h文件和寄存器管理器中的ProcessRegisterNumber程序。
MAXQ3120RD.h包含一个由typedef定义的名为EEPROM_DATA的数据类型。这个定义并没有被真正实例化;而仅仅是作为模板,用于定义数据如何存入EEPROM。在EEPROM_DATA定义的下面,还定义了两个宏,用来返回两个值,分别是结构中某成员的偏移地址和某成员占用的字节数。定义新寄存器的第一步,是在结构中添加成员(最好是在尾部),从而为寄存器分配EEPROM存储空间。
下一步是定义寄存器号。这需要编辑寄存器管理器中定义的RegParmTable结构。这个表包含了电表中定义的每个寄存器,并按编号排序。每个成员包括:
寄存器号,16位无符号值。
物理数据单元编号,用于计算实际寄存器值。例如,寄存器9110请求当月总的正向无功用电量。它是两个电能累加器的和:包括1象限的用电量和4象限的用电量。因此,物理单元的个数是二。寄存器管理器必须提取指定单元(CurrentQuadrant1AccumTariff)和下一个单元(CurrentQuadrant4AccumTariff)的数据,并求和以获得所需信息。
每个单元的长度,以字节为单位。
存储的数据类型:INT_REG,表示寄存器包含被视为整数的二进制数据;
BCD_REG,表示寄存器包含的是传输前无需进一步转换的BCD码数据;或者MDH_电感器厂家REG,表示寄存器包含的是日期信息(月:日:小时)。
EEPROM中数据的偏移量(单位为字节数)。
为了节约处理时间,ProcessRegisterNumber程序采用二元搜索算法找出寄存器地址。因此,表格保持排序状态是非常重要的。如果寄存器表变得无序,结果就无法预料了。
一旦表格被更新,新的寄存器可以通过通信通道进行读写。电表到底如何处理该信息,是下一部分的主要内容。
具有额外功能的读写寄存器
还有一种应用情况,即你想让一个写事件触发额外的功能。为了达到这种效果,必须让寄存器管理器向额外任务发送一个消息,或者更新执行额外功能所涉及的RAM内容。作为样例说明,可在寄存器管理器中搜索C030,你会找到下面这段代码:
switch(Register.Word)
{
case 0xC030: // Meter constant, real
action_value = 0;
for(i=4; i>1; i--)
{
action_value *= 100;
action_value += (g_CommBuffer.Message[ i] & 0xf) +
(g_CommBuffer.Message [ i] >> 4) * 10;
}
set_E_pulse(action_片式电感器value); // this will set E_pulse
break;
这段代码在EEPROM的寄存器数据更新完毕之后运行。在这个条件下,主机请求改变电表常数。存储在EEPROM中的电表常数寄存器更新过后,传输到通信缓冲器的毫秒数值被转换成内部电表单位,并通过set_E_pulse函数发送给DSP程序。
只读寄存器
一些只读寄存器只是简单地从EEPROM中读取数据(如用电量),并通过电表的其它进程来更新其中的数据。然而,另外一些只读寄存器(如RMS电压)并未存储在EEPROM内。这些寄存器数据存储在EEPROM内是没有任何意义的,而且如果这样做并连续更新数据,会迅速损耗EEPROM!你可以在ProcessRegisterNumber中的表格注释里找到这些寄存器,表述为“not stored in EEPROM”(未存储在EEPROM内)。
这些寄存器由寄存器管理器的GetSpecialRegister程序来控制。对应每个大功率电感只读寄存器,程序都在switch分支选择语句中提供相应的条件。例如:
如何发现并解决FPGA设计中的时序问题耗费数月精力做出的设计却无法满足时序要求,这确实非常令人伤心。然而,试图正确地对设计进行约束以保证满足时序要求的过程几乎同样令人费神。找到并确定时序约束本身通常也是非常令人头痛的问题。时序问题的恼人之
Stellaris™系列微控制器的ADC过采样技术(ADCSequenceConfigure(ADC_BASE, 0, ADC_TRIGGER_TIMER, 0); ADCSoftwareOversampleConfigure(ADC_BASE, 0,
利用可编程逻辑实现灵活高效的多媒体信号处理从非常简单的消费类音/视频播放器到在专业制作环境中使用的高度复杂的音视频捕捉、编辑和回放系统,多媒体设备或系统的应用范围非常广泛。人们在实现这类应用系统时会使用特殊应用标准产品(ASSP)、专用数字信
5/6 首页 上一页 3 4 5 6 下一页 尾页