随着一种新产品——我们在Missing Link ELECTRONICS公司称之为“智能产品”的面市,嵌入式系统的发展出现了新动向。这一名词源自最近新出现的一个词“智能电话”,用于描述具有智能电话特性的嵌入式系统:丰富的交互式用户接口,能够通过各种传感器来感知环境,以及很强的本地处理能力等。
在智能产品中,这些功能集成到机械或者电子机械系统控制中:我们可以称之为目标系统。其应用实例包括家电、车辆以及机器人等。在智能电话出现之前,人们很早便开始了这类集成功能的研究。1
随着网路向泛在链接的发展,智能产品这一概念更加丰富了。目前,很多市场都要求新产品至少具有一种网络接口,用于接收命令,报告状态。逐步的,新产品将加入“物联网”:设备之间通过点对点网络共享计算资源,进行控制,传递状态信息,还可以在云中通过深度计算和存储资源进行交互。目前对这类系统的设计和行为进行了深入研究。2
在本文中,我们的兴趣不是分析这类智能产品,而是怎样处理这类产品中大量的不匹配问题:不匹配的产品生命周期问题。一方面,问题在于,电子/机械目标系统发展缓慢,在某些情况下,数十年不会发生变化。而另一方面,智能产品的智能链接功能却在以网络速度发生着变化;新的隐藏用户接口、新传感器,甚至是新的控制算法等。这种变化的不合拍对系统的智能部分和目标部分之间的接口带来了很大的压力。
当然,可以通过软件来解决这一问题。可以在标准CPU内核上运行代码来实现智能产品的功能,而且还可以进行修改。但是,共模电感对物理接口接触越深——智能系统和目标系统之间,或者智能系统及其传感器和网络之间,那么,就会知道硬件的作用会越来越大。在这些接口附近,以及数字和模拟传感器感应器的实际链接中,通常需要硬件来加速对时间要求较高的互操作。
这一问题的数字部分已经有FPGA应用。这些器件的最早应用是在数字接口中。目前,引脚数很多的大容量FPGA支持实现完整的智能系统。这样,设计的所有数字部分,从接口到加速器和CPU内核,可以在现场针对用户接口和网络环境的变化进行重新配置。
但是模拟电路呢?无法配置智能系统和目标系统之间接塑封电感口上的模拟信号通路,或者无法在智能系统本身增加传感器等,这些都极大的限制了智能产品的灵活性,及其产品生命周期。例如,在热传感器中,一种新应用怎样使用模拟信号——而接口目前还不能提供这类信号?在现场修改,增加模数转换器(ADC)和信号调理电路不太可行。
对此,人们不太注意的FPGA特性就显得非常重要了。高级FPGA的可配置I/O引脚支持LVTTL——非常适用于我们的目的,以及LVDS I/O,可以高达数百兆(MHz)。这一事实非常明显,因为LVDS输入实际上是性能良好的高速电压比较器的外在输入。原理上,这一比较器可以用于构建delta-sigma调制器(DSM):即,过采样ADC。
DSM是多种信号目前最好的数据转换方法,而且精度比较高。当然,其结构也可以用于建立数模转换器(DAC)。图1上部显示了一阶DSM差模电感的基本组成。这一版本采用了积分电路—&md共模电感ash;“智能部分”,对差值进行求和——输入信号和反馈信号之间的“delta”部分。1比特ADC只是比较器,1比特DAC是脉冲宽度调制数字输出。当积分电路输出高于参考电压时,采样电路接通DAC,逐步驱动积分电路后电感器企业向输出。采样电路输出的脉冲列是模拟输入的数字表征。
这涉及到一些关键点。在实际中,DSM会使用远远高于Nyquist频率的采样率,而这是传统闪存ADC采样所使用的频率;即,过采样。而且,DSM在反馈网络中采用了滤波器,进行噪声整形。这些相结合,过采样扩展了采样噪声功率谱,噪声整形功能将噪声移出了信号带宽,如图2所示。这些理念相结合,仅使用FPGA的可配置I/O引脚以及少量的外部无源器件就能够构建非常好的ADC和DAC。
但是,实现起来并不是那么简单。图3左侧显示了连接输入的一个简单方法。然而,有一些名为delta调制器的源,不是DSM,它们不进行噪声整形。对比图中右侧的真DSM,FPGA的LVDS引脚高效的实现了1比特比较器,而采用了无源RC低通网络实现了环回滤波器。结果是具有噪声整形功能的真DSM。
很显然,在模拟设计中,不能忽略FPGA LVDS引脚的模拟行为。相应的,有限振幅判决时间、亚稳态以及其他因素等都极大的影响了转换的信噪比(SNR)。
面向PLC的精密信号处理与数据转换器件可编程逻辑控制(PLC)是一种基于计算机的紧凑的电子系统,它使用数字或者模拟输入/输出模块来控制机器、工艺和其他控制模块。PLC能够接收(输入)和发送(输出)各种不同类型的电气和电子信号,并利用它们来
DK124的BUCK电路工作不正常各位大哥,也希望在这电源网发这电路图的大哥能看到,我按照你这个电路搭了一个输入220VAC,输出24V0.5A的,Z1是24V稳压管,现在输出38V,而且电压有点飘,我带一个0.2A的负载,输出直接掉
四色印刷实地色标准及其允差范围的测定为了获得最佳的印刷实地密度值,以前完全采用视觉评价,即把视觉评价图像作为印刷品评价的惟一标准。这种方法存在的问题是彩色图像印刷品质量的评价,尤其是色彩的评价很难把握,图