2.3 传感器
(1)红外测距传感器
红外测距传感器[5-6]是机器人的“视觉器官”,通过不断读取其数值并进行判断,才能确定机器人所处位置环境,以确定机器人下一步该执行什么命令才不致碰撞,并按照理想的路线行走。依据比赛场地规格,本机器人采用SHARP公司的GP2D12PSD传感器(后面简称PSD传感器),其有效测距范围为10 cm~80 cm。其原理如图4(a)所示。
该传感器采用三角测量的原理,如图4(b)所示红外发光二极管发出红外线光束,当红外光束遇到前方的障碍物时,一部分反射回来,通过透镜聚焦到后面的线性电性耦合器件CCD(Charge Coupled Device)上,根据红外光线在CCD上聚焦的位置,可知道光线的反射角,进一步折算出物体的距离。由于PSD传感器输出电压和实际距离是非线性关系,可以通过线性插值运算得出其转换近似公式。
根据比赛的需要,机器人应该能够测量不同方向的障碍物的距离,理论上8个方位均应设置红外测距传插件电感感器;在满足比赛要求前提下,考虑经济性,本设计采用了6个红外测距传感器,其安放位置如图4(c)所示。通过1个或多个传感器数值可以较精准地确定机器人的位置和墙壁的关系。例如,当正前传感器和左前传感器数值同时很大(距离很小)时,说明机器人处在一个角落上,前方和左侧均是墙壁,此时可以执行右拐命令,从而走出角落。
(2)远红外火焰传感器组
为能完成灭火任务,机器人必须能确定火焰的大致位置,并能对火焰是否被扑灭做出判断。本文设计了由28个红外接收管组成的2个远红外火焰传感器组,前后每个塑封电感器方位各有14个红外接收管组成,每2个并联并指相同一个方向,2个传感器组共指向14个方向,可以覆盖360°范围。如图5(a)所示,14个端口通过CD4051八路转换开关连接至ATMEGA8—16PC单片机,其中SCK、MISO、MOSI为位选择端口。此外,本设计还可以通过对14路读取数据进行比较,从而确定其最大最小值及相应端口值,方便火源方位的确定。
通过对远红外传感器组的不同端口工字电感值的比较,还可以确定机器人和火源的相对位置,以判断前进方向,完成趋光动作。当机器人与火源相对位置如图5(b)所示时,可以读取端口2和端口4的值,并进行作差,端口2的值大于端口4(说明2更靠近火源),则执行左拐命令,使其差值在一定范围内,然后执行直行命令趋近火源。
(3)地面灰度传感器
比赛规定,机器人起始位置是直径为30 cm的白色圆,每个房间入口有一条3 cm宽的白线,其他地面均为黑色。机器人的启动和停止及进房间的标志都要依靠对地面灰度的判断,因此需使用能对地面反射光线的强弱做出反应的传感器。本机器使用一对地面灰度传感器,放置在前后两端的底座上。地面颜色越深,其值越大,地面颜色越浅,其值越小。
如图6所示,贴片电感地面灰度传感器通过发光二极管LED照亮地面,地面的反射光线被光敏三极管接收,当地面颜色为黑色时,反射的光线比较弱,则光敏三极管的基极电流越小,集电极电流也相应较小,1端口电压值较高,其测量值较大;反之当地面为白色时,反射的光线较强,集电极电流越大,1端口电压值较小,测量值也较小。
本文研究并设计了基于ARM9嵌入式系统的一种智能灭火机器人,具有以下5个创新点:(1)采用了嵌入式系统内核,大大提高了机器人处理信号的能力;(2)双电源供电系统引入,使机器人的运行更加稳定可靠;(3)采用PWM信号控制大功率直流电机,在速度和精度方面有了很大的改进;(4)通过合理选择PSD测距传感器的个数和安放位置,既满足比赛要求,又能节约成本;(5)本文设计的远红外火焰传感器组,很好地完成了对火源的精确定位任务,提高了灭火可靠性和快速性。
汽车LED照明方案设计发光二极管(LED)照明为标新立异、舒适和用户定制开启了一片新天地。这些设计机遇在迅速提升LED在车内的应用程度和速度。当把LED用在车内、车前和车尾照明时,有几种方法和设计技术可供选择。对车用LED
ATE促进WiMAX射频测试与特征描述事实证明,WiMAX收发器件有益于消费电子市场的发展,它们在此找到了多种用途,其中包括把WiFi热点连接到互联网。为确保器件按预想的那样工作,并且使它们迅速上市,器件制造商们需要先进的多功能测试设备和
高能效比电容供电电路实现从设计角度看,超级电容和电池的根本区别在于电容器在充/放电周期发生的显著电压变化。充电时,理论上,电容器的电压从零上升到其最高额定电压,而电池的端电压在其工作周期中变化很小。超级电容是电子电容器的一个
2/3 首页 上一页 1 2 3 下一页 尾页