摘要:介绍了以TMS320F2812和ADS8364为核心的智能节点设计,该节点不仅可以进行数据采集,还可以实现阚值报警、数字滤波、FFT变换等功能。并详细介绍了本设计的工作原理、硬件设计以及软件设计。
关键词:DSP;CAN总线:智能节点
0 引言
在实际工程应用中,经常需要对各种设备进行状态监测和故障诊断,首先要对各传感器的信号进行采集,为了减轻上位机的运算负荷,设计了一种基于DSP的智能节点,主要用来实现信号采集和FFT变换等功能。
1 硬件设计
智能节点的硬件主要包括DSP处理器、模数转换器、扩展的静态存储器、电贴片电感平转换芯片、CAN接口驱动、光电耦合输入和传感器调理及电源电路等。
DSP处理器选用TI公司的32位定点高速DSP芯片TMS320F2812。TMS320F28X系列是当今世界上最先进的32位定点DSP芯片。它不但运行速度高,处理功能强大,并且具有丰富的片内外围设备,便于接口和模块化设计。它既具有数字信号处理能力,又具有强大的事件管理能力和嵌入式控制功能,特别适用于有大批量数据处理的测控场合,如工业自动化控制、智能化仪器仪表及电机伺服控制系统等。采用8级指令流水线,单周期32×32位MAC功能,最高速度每秒中可执行1.50亿条指令(150MIPS),保证了控制和信号处理的快速性和实时性。另外MS320F2812片上还集成了丰富的外部资源,包括16路12位ADC、16路PWM输出、3个32位通用定时器、128k的16位FLASH存储器、18kRAM存储器,外围中断扩展模块(PIE)可支持45个外围中断,并具有McBSP、SPI、SCI和扩展的CAN总线等接口。TMS320F2812还支持最大1M的外部存储器扩展。TMS32 0F2812支持C/C++编程语言,其c语言优化器的C编译效率可达90%,还有虚拟浮点数学函数库提供支持,可以大大缩短数学运算与控制程序的开发周期。
模数转换器选用TI公司的ADS8364,该芯片是一款6路模拟输入、16位并行输出的模数转换器。6路模拟输入分为三组(A,B和C),每个输入端都有一个保持信号来实现所有通道的同时采样与转换功能,非常适合于多路(多种)采集系统的需要。ADS8364提供了一个灵活的高速并行接口,可以运行在直接寻址、循环采样、FIFO等三种模式,每个通道的输出数据都可直接作为一个16 bit的字,可以直接与数字信号处理器TMS320F2812相连。
由于数据采集和FFT变换需要大量数据空间,空芯电感而TMS320F2812片上只有18 k的RAM可供使用,而且分布于5个不同的区域,不能满足使用要求,因此在外部又扩展了一片64 k的16位无等待静态存储器IS61LV6416。
本智能节点电路设计的关键部分是TMS320F2812芯片的最小系统设计和ADS8364的接口设计功率电感。
1.1 TMS320F2812的最小系统设计
(1)电源和复位部分:本设计采用外部5 V直流电压供电。通过DC/DC器件产生3.3 V的内核电压VDD和1.8 V的I/O电压VDDIO电压。电源芯片TPS767D318为双电源输出,一路为3.3 V、一路为1.8 V。每路电源的最大输出电流为1 A。芯片还提供两个宽度为200 ms的低电平复位脉冲。本设计的复位信号分两种:上电复位、手动复位。上电复位由芯片TPS767D318产生,手动复位由电阻电容组成的电路产生。
(2)时钟部分:为DSP芯片提供时钟一般有两种方法。一种是采用晶体,一种是采用外部有源时钟芯片。本设计采用前者。它利用了DSP芯片内部所提供的晶振电路,在DSP芯片的x1和x2之间连接一晶体可启动内部振荡器。
(3)仿真部分:这一部分将作为程序的调试和烧录所用。2812芯片提供了5个标准的JTAG信号(TRST、TCK、TMS、TDI、TDO)和两个仿真引脚(EMU0、EMU1)。
1.2 ADS8364的接口设计
ADS8364采用+5V模拟电源(AVDD)和数字电源(DVDD),而其内部的缓冲器采用与TMS320F2812相同的+3.3 V电压。缓冲器电压(BVDD)允许直接连接到3 V或5 V电压系统。TMS320F2812的I/O电压为+3.3 V,因此,若使用该元件,ADS8364的BVDD必须设置成3.3 V。
在这个设计中,塑封电感器ADS8电感器厂家364采用的是4 MHz时钟。每个通道的吞吐率最大可达200 ksps。将ADS的地址线A[2:0]接到TMS320F2812的地址线。当A0接到数字地,A2和A1接到VCC上可迫使ADS8364进入周期模式。在这个模式中,转换器可自动对6个通道进行采样,并可将数据按从A0到C1的顺序传送到输出端。
将ADS8364的BYTE引脚接到VCC上,可以使能字节模式。在这个模式中,要从ADC中正确地读取数据,需要对每个通道进行两次连续的读操作。第一次读取的是转换数据的高位字节,第二次读取的是低位字节。假如通道信息要作为数据输出的一部分,那么,应将ADS8364的ADD引脚也接到VCC。读取数据时,需要对ADS8364的每个通道进行三次读操作。第一次读取通道和数据信息,后两次分别读取高位和低位数据。
基于ATMEGA16的高精度低压无功功率补偿器介绍了基于ATMEGA16的高精度低压无功功率补偿器。该控制器采用数字检测电路来获取电网电压与电流的相位差,从无功补偿的原理出发,设计控制器的软硬件。使该系统在应用中实现了对电网功率因数的及时补偿和实
PCI总线智能GJB289A仿真卡设计摘要:在某虚拟仿真实验平台系统中,需要收发批量GJB289A总线数据,并且按不同算法对数据进行实时处理。为此,设计了PCI总线智能 GJB289A仿真卡。采用FPGA实现GJB289A接口逻辑,设计了
基于PC/104的1553B总线测控系统的设计与实现引言随着我国航空事业的迅速发展,各种新型飞机和发控设备相继研制成功,以往一些测控设备在功能和性能上已无法满足新的要求。本测控系统就是在某型飞机的研制过程中扩展出来的一个功能比较全面的1553总线测控系