手机功能整合愈来愈多,然电池容量的增长,却始终未能跟上功能变化脚步,如何在有限容量下,提高手机的使用时间,良好的电源管理与提升工艺技术,都是减少手机功耗的有效作法。
传统只用来应付通讯功能的手机,已无法满足消费者的应用需求,MP3功能手机成为必要配备,而多种多媒体功能设计,都成为3G手机时代下,业者标榜功能诉求。
工字电感器
具照相摄影功能的手机,需要有复杂的相机引擎与高亮度闪光灯;而随着无线通讯频宽增加,应用高速处理器,可提供执行Bluetooth无线传输、卫星定位、手机上网、数字电视、语音讯号编/译码…等音视讯处理能力。
然功能要求愈来愈多的结果,手机电池的负荷势必更为沉重,手机内部用电设计,也变得更为繁复,因此需要更适合的省电技术,以因应手机中各种功能需求。显然,如何将大量的功能整合在1个小空间内,整合恰当的高性能模拟与数字组件是最根本的作法。
再者,现阶段在无法提升手机电池容量情况下,有效压低数字讯号处理器的功耗变得更为重要,除透过进步的工艺技术降低数字讯号处理器驱动电压外,良好的电源管理,成为节省手机功耗的不二法则,才能设计出符合消费者对手机长时间使用的需求。
图 多媒体手机,除通讯功能外,各种影音、视讯、无线传输能力,已成为手机配备功能,但也同时增加电池功耗,因此需要更多电源管理技术,增加手机使用时间
显示屏幕及射频区块 耗电居前两名
一般手机使用时,约有超过90%的时间处于待机状态,但屏幕上仍然要显示日期、时间、电池电量、收讯状态,而此时待机模式的耗电,需要整个屏幕来支持显示,因此显示器部分成为手机耗电一大问题。
目前手机上大多是使用TFT LCD作为显示器,LCD属于被动显示,需有背光源才能发挥显示效果。背光源设计,除开关On/Off外,还须有调节驱动电流来改变LED的亮度,调整亮度的方法可借控制正向电流,来减少显示器功耗,主要方法有2种,1种是利用固定电流来驱动LED,固定电流可消除正向电压变化导致的电流变化,可以固定LED亮度;另外1种方法是利用1个电压电源和1个整流电阻器,来确定产生预期正向电流所需要向LED提供的电压。
除了屏幕是电源功耗一大杀手外,另外1个功耗来源,就是射频区块部分。当中以射频零组件中的功率放大器消耗功率为最大,强调更好输出效率的放大器电路已愈来愈受重视,同时其功耗也逐渐获得大幅改善。
新一代的移动电话开始采用更低的电池电压同时,射频功率放大器就必须改变设计方向,目前HBT射频功率放大器技术,必须适用于3.0伏特以上电压,而用于低电压直流电源上取得高线性射频功率电感生产输出,就必须仰赖E-pHEMT技术,如此能为手机制造商提供更好的功率加效率(PAE)、低压操作和高可靠性…等独特优势相对于HBT,E-pHEMT技术,具备高电压下较佳效率,在低偏压下更具吸引力。由于E-pHEMT组件,可在低于2伏特的低偏压条件下,维持良好的线性与增益表现,可以避免付出降/升压转换器的成本与功率耗损,也能在不加入不必要组件的条件下,提高电池效率并延长手机通话时间。
图 美国国家半导体0.4mm厚的超薄集成电路封装技术,适用于更轻薄短小的移动电话、显示器、MP3播放器、PDA及其它可携式电子产品。
压差线性稳压器LDO减少音频功耗
手机各种音讯功能,如MP3播放、多和弦铃声和FM广播…等功能,都会增加手机功耗。因此如何让音讯电路最佳化达到低功耗设计,成为延长电池时间的重要问题。
而改善音讯耗电能方法,手机音讯组件多要求具备较好的噪声抑制、低工作电压、高功效性能。目前一般最常见采用压差线性稳压器(Low Dropout regulator;LDO)来抑制噪声(PSRR)。线性调压是最常见且最易应用的电压调整方式,其优点是封装体积小、外部组件少,利于电工字电感器路面积有限的手持装置设计。
LDO是电路板设计上常见的直流转换电感器批发组件,LDO都是高电压转低电压工,作原理是类似像分压原理,其脚位少、可以过滤电源噪声。但LDO虽然是低转换电压,功耗相当低,
电力机车辅助电源系统的分析与比较1 引言 电力机车辅助电源系统是机车的重要组成部分,担负着除机车牵引系统主电路以外各种装置的供电任务,是提供风源的空气压缩机、空调、通风机等辅助电动机的三相交流电源,电热器、冰箱、信息显示装置的电源等
stm32的现状与前景怎么样?必要性?如何学? 针对嵌 本帖最后由 北洋水师 于 2016-3-13 15:47 编辑
如题,不太好的二本出来的毕业生(暂无考研意向),像各位业界道友求教,如何在毕业离校之前用STM32(电子技能)武装自己,
PIC16C78系列混合信号嵌入式芯片的原理和应用在对嵌入式系统的体积、耗电、集成度等指标要求越来越高的今天,仅仅有带AD变换电路的MCU已经越来越难以处理外围的其他模拟电路。据此,相继有一些MCU制造商推出了混合了模拟电路的MCU,为设计者提供了新