据统计,有高达20%至22%的电能用于照明。提高照明应用的能源使用效率乃至进一步降低其能源消耗,有助于减少二氧化碳排放,造就更加绿色环保的世界。因此,高能效照明正在成为业界竞逐的一个焦点。
大功率区域照明存在不少挑战,如灯具可能难以接近、光源发生故障时可能带来安全问题、户外存在多种极端环境条件等。此外,不容忽视的是,应用于大功率区域照明的现有光源(如金属卤素灯、高压钠灯、线性荧光灯及紧凑型荧光灯)存在着不少局限,如高压钠灯的显色性差(C塑封电感器RI约为22),金属卤素灯的典型灯具损耗较高(40%)且其从启动到发光至完整亮度经历的时间可能长达10分钟,线性荧光灯的冷温度性能差,紧凑型荧光灯的启动速度也较慢。
另一方面,随什么是电感器着高亮度白光发光二极管(LED)在性能和成本等方面持续改进,越来越多地用于大功率区域照明,并提供传统光源不具备的优势,如发出每流明光所消耗的电能更少、方向控制性更好、色彩质量更佳、环保,并且其开启和关闭能够更方便地控制,便于自动检测环境光从模压电感器而改变亮度;此外,LED的可靠性也更佳,利于降低维护成本及总体拥有成本。
LED区域照明应用要求
LED驱动器的主要功能就是在多种条件下限流,并要保护LED免受浪涌及其它故障条件影响,以及提供某种等级的安全性,避免(电气和/或机械方式的)震动及着火。对于区域照明应用而言,室外环境会给LED驱动器带来温度挑战,且可能需要承受277 Vac、347 Vac或者甚至480 Vac等比标准电压更高的交流输入电压。
区域照明应用的LED驱动器可能还需要符合某些有关功率因数或谐波含量的规范标准。如欧盟的国际电工联盟(IEC)的IEC61000-3-2标准对功率超过25 W的照明设备(C类)的谐波含量提出了要求,相当于总谐波失真(THD)低于35%;但符合IEC61000-3-2 C类谐波含量要求并不必然表示功电感生产率因数(PF)高于0.9。而某些市场(如美国)通常要求PF高于0.9及THD低于20%。
很多区域照明应用都在室外,可能会经受各种严格温度条件,从而使总体使用寿命受到影响。而总体系统设计对使用寿命有重要影响,故使用内部发热较少、损耗更低的高能效LED驱动器非常重要,而且在设计中要对驱动器与LED热源进行热隔离,从而增强系统可靠性。
图1:智能双亮度等级LED街道照明示例。
塑封电感器 LED照明的控制也可以变得更加智能化。传统街灯以定时器或环境光传感器来自主控制。而利用电力线通信(PLC)或无线控制技术,可以提供高度灵活的LED区域照明控制,如基于时间的光输出等级集中控制、基于车流量传感器的发光等级控制,以及根据检测人、车活动来调控市中心照明,兼顾步行车及街道照明。LED智能控制技术在节省电能之余,还不会损及安全性。典型应用有如智能双亮度等级照明,如公园、加油站顶棚、停车场所、楼梯及电冰箱箱体照明都支持根据需要来调整亮度等级的照明。LED能够即时导通及关闭,能够在这些应用中方便地根据动作或活动来调节照明等级,如在未检测到活动时提供20%-40%的亮度等级,而在检测到活动时提供100%亮度的照明。这样就利于大量节省额外的电能消耗。
LED区域照明电源架构及典型LED驱动方案
1)适合线性灯、线槽灯等应用的分布式/模块化方案
大功率LED区域照明应用中,一种常见的电源架构是“功率因数校正(PFC)+恒压(CV)+恒流(CC)”的三段式架构。这种架构中,交流输入电源经过功率因数校正和隔离型直流-直流(DC-DC)转换后,输出24至80 Vdc的固定电压,提供给后面内置DC-DC降压转换电路的恒流LED模块(见图2)。这种架构的设计提供了能够现场升级的模块化途径,可根据实际需求,灵活改变LED光条数量,从而增加或减小光输出,满足具体区域照明应用要求。这种架构下,交流-直流(AC-DC)转换与LED驱动电路并未集成在一起,而是采用分布式配置,既简化安全考虑又增强系统灵活性,也称作分布式方案,典型应用包括线性灯及线槽灯等。
峰值电流控制的非理想直流变换器的建模摘要:应用电路平均建模的新方法建立了非理想Buck-Boost变换器的小信号模型,考虑了功率管的开通电阻、二极管的正向压降和正向电阻、电感的等效串联电阻、电容的等效串联电阻。在此基础上,进一步推导了此 谁家可以设计高质量线性电源,在西安,有能力的速联谁家可以设计质量好的线性电源,有能力的速联系。 基于CC2430和DS18B20的无线测温系统设计目前,很多场合的测温系统采用的还是有线测温设备,由温度传感器、分线器、测温机和监控机等组成,各部件之间采用电缆连接进行数据传输。这种系统布线复杂、维护困难、成本高,可采用无线方案解决这些问题。无线测温
联系电话:18991188760王工最好在西安
输入:交流220V
输出电压:正负12V
输出电流:正负200ma
电源调整率:0.01%(在电源输入电压变化