0 引言
功率放大器在音频功放、发射系统、伺服系统、声纳探测、振动测试等很多领域都得到广泛的应用。传统的功率放大器采用线性放大电路,其效率较低(40%一60%),且体积大,故应用领域受到限制。为了解决传统功率放大器的缺点,开关功率放大器应运而生。
目前国内外在高功率(5 kW以上)放大器系统设计中,为了满足功率要求普遍使用IGBT为主的全桥逆变拓扑。相比之下,以MOSFET为功率器件的高功率放大器系统的设计方案只占少数,而且其开发的控制方式不能够很一体电感器好地解决系统模块间的均流控制,以及电容器中点电位控制等问题。故急需开发出以M0SFET为主的高功率放大器系统,以可靠地提高放大器系统的性能。本文提出了一种适合于高功率放大器系统模块化使用的逆变单元,并详细介绍了单元的拓扑和数字控制原理,实验结果证明了它的良好性能。
1 主电路拓扑
传统的两电平全桥逆变拓扑应用于高功率放大器系统时,由于受到器件耐压的限制,难以使用频率较高的MOSFET,故系统性能无法有效提高。借鉴了已有的研究,我们采用了文献提出的五电平二极管中点钳位逆变拓扑(“Five—Level NPC Inverter”,以下简写为“FNI”)作为基础功率单元。图l所示为FNI电路。
这种FNI结构的基础——NPC逆变拓扑,最早是由Nable-等人于1981年提出的。与传统两电平变换器相比,有以下优点:在大功率系统中,将功率器件直接串联使用而无须外加辅助电路;器件耐压极限降至直流侧电压的一半,使器件的选取变得灵活;输出波形中谐波成分相对于两电平变换器大为减少,减轻了滤波环节负担;负载上电压纹波减小,抑止了电磁干扰问题。
2 控制方式的比较与改进
2.l 已有控制方案的介绍
文献中Lau W H等开发的控制方案的优点在于提高模块输出的等效开关频率,抑止输出谐波;缺点在于系统的输入信号在经过PWM调制后,仍不能作为驱动信号使用,还须继续进行较繁琐的计算,故不能很好地使用于现有的数字信号处理芯片。该方案的详细分析请见文献。
2.2 改进的控制方案的原理
改进后的控制方式首先将文献中的一体成型电感载波频率提高一倍至2fc,并调整其偏置后,再进行PWM比较,如图2所示调制后的信号即为驱动信号。而且控制左右桥臂(Legl、Leg2)的载波相位相同,没有文献控制方式所要求的相位差,其好处在于避免系统在调整开关频率的同时还需要调整相位差,同时有利于系统调节直流侧电容的中点电位。
比较图2和文献可以发现,开关管的驱动信号是相同的,所以输出波形也一定是相同的。改进后的控制策略能够便捷地应用到数字信号处理芯片中,同时保留文献控制方式的优点。例如在DSP(TMS320LF2407)芯片上PWM的调制可以通过专职的事件管理模块EVA及EVB直接完成,这样大大降低了平面电感器控制方式的实现难度。
改进后的控制策略也有不足之处,就是也没有提供解决直流侧电容的中点电位不平衡问题的方案。根据实验结果可以发现,由于电路元件的固有电阻特性不对称所造成的电容中点电位的静态误差不能被忽略。图9(f)为直流侧电源为40一体成型电感器0 V时中点电位的情况,可以发现有13.2 V的静态误差。
2.3 中点电位不平衡的危害与解决方案
文献分析了系统直流侧中点电位漂移对输出THD的影响,如图3所示。图3中的k值:,代表了中点的失衡程度。在其他工业用途中,由于对输出波形畸变要求不高,中点的适当漂移是允许的。但是,在诸如功率放大器系统等对输出波形质量要求较高的应用中,中点不平衡可以成为输出畸变的重要原因之一。为了克服中点不平衡带来的输出波形质量下降,我们在改进的控制方式中加入中点平衡控制,程序流程图如图4所示,中点平衡控制方案框图如图5所示。
基于80C51微处理器的OLED模块设计有机发光显示器(OLED)是以有机电致发光材料为基础的新一代平板显示技术,与传统的显示技术相比,OLED具有更薄更轻、主动发光(不需要背光源)、广视角、高清晰、快速响应、低能耗、耐低温和抗震性能优异、
全国印刷技能大赛第一届全国印刷行业职业技能大赛已于2010年年底圆满结束。全崮印刷技能大赛不仅检验了印刷行业的技术力量.还展示了高职教育改革和发展的成果,显现出高职院校师生娴熟的职业技
[开关电源]【有奖活动】看视频 答题有礼金升阳送福利啦!观看R3系列宽压DC/DC电源模块介绍视频,金升阳送您双重好礼!
一重礼:看完视频后登陆,参与答题,您将获得第一次抽奖机会!
二重礼:看完视频后登陆,参与提问,您可获得第二