缺省任务列表
以下是参考设计中采用的缺省任务列表:
DSP:对应每个电源周期,这个程序会计算电力线路的所有参数,并累加本电源周期的用电量。
串口驱动器:检测两路通信通道的状态,并将第一个发出字符的通道置为“活动”通道。在消息检查器任务确定消息完成或产生超时之前,通道将始终保持活动状态。
消息检查器:验证输入字符串符合协议规范,并在完整接收消息后通知消息译码器。
消息译码器:解释接受到的消息并执行相应的请求操作。
异步事件管理器:执行那些不是按照时间表进行的事件任务,比如峰值检测和电能累计。
时段表管理器:周期性检查时钟,并按照时段表调整费率寄存器的值。
显示管理器:根据时间和其它事件刷新LCD显示。
消息格式器:为消息译码电感器电路图器解释的消息准备回复信息。
消息构建器:接收格式化后的消息并加上用于传输的消息头和消息尾。
寄存器管理器:执行读/写EEPROM操作。
计时管理器:通告按固定时基启动的任务。
负载曲线记录器:被请求时,向EEPROM记入用电量,便于将来报告这些数据。
添加任务
如电表参考设计中所定义,任务是一段单线程代码,它执行电表要求的某项功能,并快速(通常只有几毫秒)返回调用函数。然而,大多数任务都需要比这更长的时间才能完成。比如,在任何合理的速率下发送一个消息都需要多个周期。因此,大多数任务都需要一个状态变量,以便将其分解为数大电流电感个子任务。
一旦任务编写完成,你就可以在spintaskwheel.c文件的任务列表中加入该调用。注意,你可以将任务加在执行流程的任何位置,并根据你的需要多次频繁调用它。你将发现,DSP任务调用非常频繁,串口驱动器SerialPortDriver任务也被调用了几次。因为要保持电能测量的完整性,DSP任务不允许被搁置数个周期,同时不允许SerialPortDriver任务错过输入字符。
最后,测试你的代码。任务轮循环时,你的新任务将伴随其它任务被调用。
全局变量
由于未使用真正意义上的多任务操作系工字电感器统,也就意味着不会有编程人员所熟知的、真正意义上的消息传递、信号量或其它机制。通信是通过上文提到的消息板以及一组全局变量实现的,各个任务必须按照严格的规则来设置和读取这些变量信息。这些全局变量列举如下:
g_CommSystEMState: 这个变量包括一组通信通道控制位。具体来说,每个通道包括:一个active (活动)位,用于指明某个特定通道处于活动状态(从而可丢弃到达另一个通道的字符);一个TBE位,用于使闲置通道做好工作准备;以及一个data loss (数据丢失)位,当闲置通道收到字符而另一通道正忙于通信时,该位被置高。
g_TransmitByte; g_ReceiveByte: 分别保存着下一个要传送的字节和最新接收到的字节。
g_CommBuffer: 一个50字节数组,包含刚接收到的消息或要发送的消息。注意系统仅有一个通信缓存。它不仅被两个通信通道所共享,也被发送和接收通道所共享。
g_MeterAddress: 一个包含电表网络地址的6字节数组。初始化时从EEPROM内读取该信息,并存放在RAM中。
g_MessageFormatterData; g_DispFormatterData; g_ScheduleManagerData; g_AEMData; g_LCLRegData: 这些寄存器在寄存器管理器和各种任务间传送数据。例如,一个需要发送的寄存器内容,会被寄存器管理器放入g_MessageFormatterData中。
g_AEMRegisterNeeded; g_DispFormatterRegRequest; g_RequestScheduleManager; g_LCLRegRequest: 这些寄存器里,包含了特定任务需要读或写的寄存器。注意,消息译码器没有全局地址寄存器:寄存器管理器可以智能地从消息缓存中找出这个信息。
g_LCDMode: 包含显示器插件电感器的模式字节。见下面的显示定制部分。
g_TariffInEffect: 包含当前有效的费率号码。这个函数有自己的全局变量,以便每次累计电能时,无需通过多次EEPROM读操作来确定将采样值存在什么位置。
g_PW: 包含当前有效的各个通信通道的口令号码。
g_irTimer; g_rsTimer: 用于计数各个通道口令有效时间的定时器。一旦接收到口令后,它的有效期限一体电感是60秒。一个口令的有效时间结束后,g_PW中相关的4位数据就会被清零。
如何发现并解决FPGA设计中的时序问题耗费数月精力做出的设计却无法满足时序要求,这确实非常令人伤心。然而,试图正确地对设计进行约束以保证满足时序要求的过程几乎同样令人费神。找到并确定时序约束本身通常也是非常令人头痛的问题。时序问题的恼人之
Stellaris™系列微控制器的ADC过采样技术(ADCSequenceConfigure(ADC_BASE, 0, ADC_TRIGGER_TIMER, 0); ADCSoftwareOversampleConfigure(ADC_BASE, 0,
利用可编程逻辑实现灵活高效的多媒体信号处理从非常简单的消费类音/视频播放器到在专业制作环境中使用的高度复杂的音视频捕捉、编辑和回放系统,多媒体设备或系统的应用范围非常广泛。人们在实现这类应用系统时会使用特殊应用标准产品(ASSP)、专用数字信
2/6 首页 上一页 1 2 3 4 5 6 下一页 尾页