2.3 功率MOSFET器件及其驱动电路选择
图3为功率MOSFET器件的工作原理电路示意图。图3(a)中,RG和电感器生产CGS是影响MOSFET导通延时的主要参数;漏栅极电容CGD是造成开关动作过程中栅极电压受干扰的主要参数;漏源极电容CDS是影响关断时间的主要参数。MOSFET器件转换过程有2个:导通转换和关断转换。导通转换过程的漏源电压VDS、漏极电流iD、栅源电压VGS和与栅极电流iG随时间t的变化关系如图3(b)所示。导通转换过程分成4个阶段,各个阶段分别是:
(1)t0~t1阶段:栅极驱动电流iG对CDS和CGS充电,使CGS上的电压从模压电感0上升到MOSFET导通阈值VGS(th)。
(2)t1~t2阶段:栅源电压VGS继续以指数规律上升,超过MOSFET导通阐值VGS(th)达到Va,在VGS超过VGS(th)后,漏极电流开始增长,并模压电感器达到最终的输出电流Io。在这一过程中,由于电压与电流重叠,MOSFET功耗最大。
(3)t2~t3阶段:从t2时刻开始,MOSFET漏源电压VDS开始下降,引起从漏极到栅极的密勒电容效应,使得VGS不能上升而出现平台,在t3时刻漏源电压下降到最小值。
(4)t3~t4阶段:在这一区间栅源电压VGS从平台上升到最后的驱动电压。上升的栅压使漏源电阻RDS(on)减小,t4以后MOSFET进入导通状态。
MOSFET器件的截止转换过程与上面的过程相反。由上面的分析可知对栅极驱动电路的要求主要有:
(1)驱动信号的脉冲前、后沿都要陡峭。
(2)对功率MOSFET栅极的充放电回路时间常数要小,以提高功率MOSFET器件的开关速度。
(3)驱动电流为栅极电容的充放电电流,驱动电流要大,才能使开关波形的上升沿和下降沿更快。
选用MOSFET器件IRLML2803,查其特性曲线图可得:在VDS=15 V、VGS=12 V时,总栅极电荷QG≈3.7 nC,则栅极电容C=QG/VGS=3.7 nC/12 V≈0.3 nF=300 pF。
MOSFET导通和截止的速度与MOSFET栅极电容的充电和放电速度有关。MOSFET栅极电容、导通和截止时间与MOSFET驱动器的驱动电流的关系可以表示为:
dT=(dV×C)/I
式中,dT是导通/截止时间,dV是栅极电压,C是栅极电容(从栅极电荷值),I是峰值驱动电流(对于给定电压值)。
IRLML2803导通/截止时间是4 ns,则I=QG/dT=3.7 nC/4 ns≈0.9 A。即由以上公式得出的峰值驱动电流为0.9 A,同时还需要考虑在MOSFET驱动器和功率MOSFET栅极之间使用的外部电阻,这会减小驱动栅极电容的峰值充电电流,所以选择峰值输出电流大于0.9 A的驱动器。系统中采用的是4.5 A高峰值输出电流的同相驱动器TC4424A,经实验验证满足快上升沿信号输出要求。
3 测试结果与分析
3.1 触发信号光纤传输转换测试
激光器外触发系电感器的作用统采用光纤传输和收发技术,由于其本身是由绝缘材料制成,所以具有很好的高电压隔离能力,同时还具有很强的抗干扰能力,多路光纤信号传输的同步性也非常好,满足对信号高压隔离和同步性的要求。
图4为激光器外触发单元产生的信号波形图。图4(a)、图4(b)中通道2均显示的是工作频率50Hz的激光器闪灯触发信号(前者是输出个数为50的脉冲序列,后者是单个输出脉冲),它在控制信号产生单元内由PC机编程产生,经脉冲变压器隔离、电/光转换、光纤传输处理输入至触发单元,再经过光/电转换、功率晶体管驱动放大,由高耐压脉冲变压器隔离输出至激光器,其上升时间Tr在200 ns以内,主要是由脉冲变压器的输出上升时间确定。
基于USB2.0接口的语音采集系统设计引言语音信号的采集和处理在网络、通信、智能仪表、工业控制、医疗卫生、公共安全等领域得到了越来越广泛的应用,而这些工作都需要一套高速的语音信号采集系统来完成,要对语音进行采集就需要一种高速的,能进行长时
[ADI]关于能量收集大家怎么看,现在发展到什么程dn483fchs.pdf(624.13KB,下载次数:15)2016-3-2317:54上传
点击文件名下载附件
能量收集器可从局部环境产生功率
能量收集技术可以利用环境中的能量为传感器供电,感觉很强大
谈谈电源去耦这一讲,我们先就大家对电源设计中的去耦问题的疑问作统一的解答,希望看过之后能对你能有所帮助!谈到DC-DC转换 (及抗噪),探讨的问题一般涉及各种器件,如采用各种系统结构的线性稳压器和开关稳压器 (我