Use thermal analysis to predict an IC's transient behavior and avoid overheating
Abstract:This article presents a method for predicting thermal behavior in ICs. This information will be especially helpful for the PMICs (power-management ICs) used in automotive applications and other high-temperature environments. After characterizing thermal behavior, we formulate a mathematical model that simulates transient temperatures within the chip. We introduce physical laws governing thermal behavior 一体成型电感器and evaluate them for use in the thermal-body models defined for an IC. Based on that analysis, we then propose an equivalent passive RC network for modeling an IC's transient thermal behavior. To illustrate an application for the proposed analysis, we devise an RC network for an LED driver (the MAX16828). We conclude with insights on the use and usefulness of this approach, and suggest ways to speed the creation of the RC models.
<-- =======================================================================电感器厂家 --><-- CONTENT: DB HTML --><-- ======================================================================= -->This article was also featured in Maxim's Engineering Journal, vol. 68 (PDF, 2.72MB).
A similar article appeared in EDN Magazine in January 2010.
Designers often need to know the thermal behavior of an IC, especially for the PMICs (power-management ICs) used in automotive applications. When a particular IC operates at a high temperature (such as +125°C), does it trigger the thermal-shutdow绕行电感n circuitry or exceed the product's safe operating temperature? Without a definite method of analysis, we cannot offer a reliable answer. The绕行电感器refore, when defining a new IC, we need a way to predict thermal shutdown or excessive die temperature based on complex internal functions.
For operation in DC mode, you can often determine the junction temperature using data-sheet parameters such as θJA (thermal resistance) and θJC (thermal junction temperature).1 However, to predict how high the junction temperature will peak for modes other than DC (such as a power MOSFET driven by a PWM signal to control LEDs or a switching regulator), you need transient thermal data. Although useful, that data is not typically found in data sheets. You might also ask how long the chip can operate at a given power-dissipation level before encountering trouble? That question is also difficult to answer.
This article derives equations that use power dissipation and the ambient temperature to predict the junction temperature of a chip as a function of time. The article begins by introducing the physical laws upon which the analysis is based. The discussion continues by defining an IC system as a complex, layered thermal body. The thermal-body model is then analyzed theoretically, and equations to govern transient thermal behavior are derived. Based on these equations, the article proposes an equivalent RC passive network that represents the IC's thermal characteristics. Finally, to demonstrate the usefulness and accuracy of this analysis, experimental results are shown for a high-voltage, linear HB LED (high-brightness LED) driver with PWM dimming, the MAX16828.
For any object we can derive the required relations for temperature vs. time by using two principal laws.
Newton's law of cooling:
(Eq. 1)
Where:
TB is body temperature.
TA is ambient temperature.
kA is a constant of proportionality (> 0).
t is time.
Law of conservation of nonlatent energy:
(Eq. 2)
Where:
P is constant power generated or imparted to the body.
m is the mass of the body.
c is the specific heat capacity of the body.
Combining these laws, we have:
(Eq. 3)
The data sheet for an IC normally lists thermal data for the package, such as θJA. That data lets us analyze the steady-state thermal equilibrium for a package to see if it agrees with Equation 3:
at the steady state用于小型荧光灯的25W迷你型镇流器荧光灯是一种以最少电能消耗(流明/瓦)产生白光的最廉价方法。现在,小型荧光灯的每年销售规模达数亿只,而对荧光灯可靠性的要求也不断提高。如今的照明系统需要镇流器控制功能以驱动小型荧光灯,但这样增加了成本
太阳能发电系统对半导体器件的需求分析 太阳能逆变器是整个太阳能发电系统的关键组件。它把光伏单元可变的直流电压输出转换为清洁的50Hz或60Hz的正弦电压源,从而为商用电网或本地电网供电。因为太阳电池板的光电转换效率可能受到阳光照射的角度
计算机电源“白金”化 80+TM 和计算机产业拯救气候行动计划 (Climate Savers Computing) 给计算机电源设立了一个强有力的效率标准。这些标准的 白金 级别规定计算机电源在 20% 额定负载状态下