Verification of the system 2 Equations 30, 31, and 32 is more difficult. We must generate heat on the die, measure the die temperature using the diode forward voltage, and fit that temperature value to a simulated value for the C1 voltage of the proposed RC network. This task is accomplished by writing a program using MATLAB.
It is important to record the电感器的原理 thermal transient at a time for which the initial temperature of the whole chip is known. In that way we also know the initial capacitor voltages for solving the RC network. Using the same test setup (see Figure 7), we now turn on the current and capture the diode voltage on a scope (Figure 11).
Figure 11. A forward-voltage transient from the MAX16828's internal diode signals that an on-board MOSFET has turned on and is generating heat.
Similar transients are recorded for three different power-dissipation levels, and one curve is fitted to that data. The circuit in Figure 12 is the result of fitting from the first set of data in which the power dissipation is 1.626W. The graph in Figure 13 compares the measured and fitted data. S上海 电感器imilarly, the graph in Figure 14 shows how the RC network fits the second set of readings (power dissipation of 2.02W). The graph in Figure 15 shows how i工字电感器t fits the third set of readings (power dissipation of 1.223W).
Figure 12. With component values as shown, this RC network models the chip's thermal transient when heat is generated on the die.
Figure 13. Measured vs. curve-fitted results for the chip's heating curve when the die is dissipating 1.626W.
Figure 14. Measured vs. curve-fitted results for the chip's heating curve when the die is dissipating 2.02W.
Figure 15. Measured vs. curve-fitted results for the chip's heating curve when the die is dissipating 1.223W.
These experimental results show that the measured results closely match the theoretical model. Such modeling is useful for simulating the transient temperature of an IC, once you have modeled the RC network for that particular chip. The model can also be used for chips of similar size to determine their thermal characteristics during the definition phase. That capability can indicate the operational limitations of the chip. That information, in turn, helps you define the chip's operational modes to prevent overheating.
This article has described a way to model the thermal behavior of a chip as an RC network, which can then be simulated easily using a SPICE tool. The following measures can improve the accuracy of this model:
用于小型荧光灯的25W迷你型镇流器荧光灯是一种以最少电能消耗(流明/瓦)产生白光的最廉价方法。现在,小型荧光灯的每年销售规模达数亿只,而对荧光灯可靠性的要求也不断提高。如今的照明系统需要镇流器控制功能以驱动小型荧光灯,但这样增加了成本
太阳能发电系统对半导体器件的需求分析 太阳能逆变器是整个太阳能发电系统的关键组件。它把光伏单元可变的直流电压输出转换为清洁的50Hz或60Hz的正弦电压源,从而为商用电网或本地电网供电。因为太阳电池板的光电转换效率可能受到阳光照射的角度
计算机电源“白金”化 80+TM 和计算机产业拯救气候行动计划 (Climate Savers Computing) 给计算机电源设立了一个强有力的效率标准。这些标准的 白金 级别规定计算机电源在 20% 额定负载状态下