3运动估计模式快速率失真决策
为了减少图像序列的时间冗余,达到更好压缩效果的目的,H.264/AVC编码方案采用运动补偿技术和预测。即由先前已编码的一个或多个帧产生当前编码帧的一种预测模式,然后再进行预测编码。且采用了一种可变块尺寸的运动预测模式,亮度块尺寸的范围从16×16变化到4×4,其中包含很多可选模式,形成了一种树形结构的运动预测。对于I帧(包含帧内4×4、帧内16×16),对P帧(包含帧内4×4、帧内16×16、SKIP模式、帧间16×16、帧间16×8、帧间8×16、帧间8×8、帧间8×4、帧间4×8)同时还为P帧和B帧提供了特殊的SKIP模式,总共11种模式。这些可选模式的存在使得编码方式更加灵活,编码精度相对于固定尺寸块预测要高很多。然而,可选的帧问预测模式增加了,必然会使得运算复杂度增加,因此有必要采用一种高效的决策方法来选取块尺寸组合方式,使得编码效率和编码质量均佳。
3.1拉各朗日代价函数
引入拉各朗日代价函数如下:
其中D表示重构恢复图像相对于原始图像间的失真;R(si,m)表示对宏块编码后数据及相关参数在码流中所占用的比特数,一般由编码统计得到,但对于SKIP模式,比特数默认为1比特;λ表示模式选择时所使用的拉各朗日乘积因子。
对于运动估计,可贴片电感器使用拉各朗日代价函数作为选择运动矢量的判决标准。根据式(1)得到对一个采样块si进行ME判决的代价函数为下:
该式返回产绕行电感器生最小代价值的最佳匹配运动矢量mi,其中M指各种可能编码模式的集合,m为当前选定模式,式(2)中R(si,m)是运动矢量(mx,my)所要传输(按熵编码)的比特数。D(si,m)表示对图像宏块的预测误差,对于该预测误差的计算有两种方案:当预测误差选择是绝对误差时用(SAD)表示,如式(3);当预测误差选择是平方差时,则用SS工字电感器D表示,如式(4)中:
其中A为当前编码宏块。在使用多参考帧进行运动估计时,mi表示所选用的最佳参考帧。在进行运动搜索时,对块si先是进行整象素精度的运动搜索,以取式(1)最小值为匹配标准,得到整象素精度最佳匹配点后,以同样的方法进行1/2,1/4象素精度的匹配搜索。同时在多个参考帧内作同样的操作,将所得的函数代价进行比较得到最小值,也就找到了s,块的最佳匹配的运动矢量mi。
3.2快速预测模式判断算法电感器课件
快速算法相对于拉各朗日代价函数算法,可分以下两步实现:
(1)以基于预测模式的方式计算代价函数J,但是这里采用简化的计算方法,对每一种采样模式进行分行交错隔点采样,如对8×8块内象素进行下采样,采样如图5大功率电感贴片电感器所示。
然后对采样点计算SAD,记做SADi。仅对采样点计算的拉各朗日代价函数如下:
J=[SAD(si,m)+λ?R(si,m)]
先对上述各种模式分别计算代价函数J,然后选择代价最小的3种模式构成候选模式集。
[DCDC]boost-buck方面的问题。我做的一个电路板,这是第一次做开关电源,就是有一个疑问,电路按芯片手册上的,做出来试试效果的,芯片手册上说4V到60V输入都可以,输出5V。
,我的意思是5V到12V就可以了,12V输入可以输
建立数码印刷与传统印刷的色彩匹配数码印刷技术的不断进步,使数码印刷越来越为大 家所接受和认可,某些机型的数码印刷机的图像印刷质 量已经很接近传统胶印了,数码印刷在很多细分印刷市 场里,已经取代了传统胶印
稳定低噪声放大器中晶体管工作点的设计方法(上)多数情况下有用信号都是非常微弱的,在这些应用中噪声系数成了表征晶体管性能优劣的主要参数。本文讨论了一种添加并联电阻来稳定低噪声放大电路中晶体管工作点的设计方法。几乎所有通信系统的接收电路的输入级都要用